Center for Quantitative Health, Massachusetts General Hospital, Boston, MA, USA.
Department of Mathematics and Statistics, Wake Forest University, Winston-Salem, NC, USA.
Brain Behav. 2022 Feb;12(2):e02077. doi: 10.1002/brb3.2077. Epub 2022 Jan 25.
Passive measures collected using smartphones have been suggested to represent efficient proxies for depression severity, but the performance of such measures across diagnoses has not been studied.
We enrolled a cohort of 45 individuals (11 with major depressive disorder, 11 with bipolar disorder, 11 with schizophrenia or schizoaffective disorder, and 12 individuals with no axis I psychiatric disorder). During the 8-week study period, participants were evaluated with a rater-administered Montgomery-Åsberg Depression Rating Scale (MADRS) biweekly, completed self-report PHQ-8 measures weekly on their smartphone, and consented to collection of smartphone-based GPS and accelerometer data in order to learn about their behaviors. We utilized linear mixed models to predict depression severity on the basis of phone-based PHQ-8 and passive measures.
Among the 45 individuals, 38 (84%) completed the 8-week study. The average root-mean-squared error (RMSE) in predicting the MADRS score (scale 0-60) was 4.72 using passive data alone, 4.27 using self-report measures alone, and 4.30 using both.
While passive measures did not improve MADRS score prediction in our cross-disorder study, they may capture behavioral phenotypes that cannot be measured objectively, granularly, or over long-term via self-report.
使用智能手机收集的被动措施被认为是评估抑郁严重程度的有效替代指标,但这些措施在不同诊断中的表现尚未得到研究。
我们招募了一个由 45 人组成的队列(11 人患有重度抑郁症,11 人患有双相情感障碍,11 人患有精神分裂症或分裂情感障碍,12 人没有任何 I 类精神障碍)。在 8 周的研究期间,参与者每两周接受一次由评定者管理的蒙哥马利-阿斯伯格抑郁评定量表(MADRS)评估,每周在智能手机上完成自我报告的 PHQ-8 量表,并同意收集基于智能手机的 GPS 和加速度计数据,以了解他们的行为。我们利用线性混合模型,基于手机上的 PHQ-8 和被动措施来预测抑郁严重程度。
在 45 名参与者中,有 38 名(84%)完成了 8 周的研究。仅使用被动数据预测 MADRS 评分(范围为 0-60)的平均均方根误差(RMSE)为 4.72,仅使用自我报告测量的 RMSE 为 4.27,两者均使用的 RMSE 为 4.30。
虽然在我们的跨诊断研究中,被动措施并未提高 MADRS 评分的预测能力,但它们可能捕捉到无法通过自我报告客观、详细或长期测量的行为表型。