Suppr超能文献

肥胖饮食行为评估量表(EBA-O)的编制、验证和临床应用。

Development, validation and clinical use of the Eating Behaviors Assessment for Obesity (EBA-O).

机构信息

Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy.

Center for Clinical Research and Treatment of Eating Disorders, University Hospital Mater Domini, Catanzaro, Italy.

出版信息

Eat Weight Disord. 2022 Aug;27(6):2143-2154. doi: 10.1007/s40519-022-01363-0. Epub 2022 Jan 29.

Abstract

INTRODUCTION

Obesity is a major health problem with an increasing risk of mortality, associated with comorbidities and high rates of dropout. Research demonstrated that pathological eating behaviors could help to phenotype obese patients thus tailoring clinical interventions. Therefore, our aim was to develop (study 1), validate (study 2), and test in a clinical setting (study 3) the Eating Behaviors Assessment for Obesity (EBA-O).

METHOD

Study 1 included the exploratory factor analysis (EFA) and McDonald's ω in a general population sample (N = 471). Study 2 foresaw the confirmatory factor analysis (CFA) and convergent validity in 169 participants with obesity. Study 3 tested the capability of the EBA-O to characterize eating behaviors in a clinical sample of 74 patients with obesity.

RESULTS

Study 1. EFA identified five factors (i.e., food addiction, night eating, binge eating, sweet eating, and prandial hyperphagia), explaining 68.3% of the variance. The final EBA-O consisted of 18 items. McDonald's ω ranged between 0.80 (hyperphagia) and 0.92 (binge eating), indicating very good reliability.

STUDY 2: A second-order five-factor model, through CFA, showed adequate fit: relative chi-square (χ/df) = 1.95, CFI = 0.93, TLI = 0.92, RMSEA = 0.075, and SRMR = 0.06, thus suggesting the appropriateness of the EBA-O model. Significant correlations with psychopathological questionnaires demonstrated the convergent validity. Study 3. Significant associations between EBA-O factors and emotional-related eating behaviors emerged.

CONCLUSION

The EBA-O demonstrated to be a reliable and easy-to-use clinical tool to identify pathological eating behaviors in obesity, particularly useful for non-experts in eating disorders.

LEVEL OF EVIDENCE

Level V, descriptive research.

摘要

简介

肥胖是一个日益严重的健康问题,与死亡率增加相关,并发合并症和高辍学率。研究表明,病理性进食行为可以帮助肥胖患者表型化,从而定制临床干预措施。因此,我们的目的是开发(研究 1)、验证(研究 2)并在临床环境中测试(研究 3)肥胖饮食行为评估(EBA-O)。

方法

研究 1 包括探索性因素分析(EFA)和 McDonald's ω 在一般人群样本(N=471)中的应用。研究 2 预计在 169 名肥胖患者中进行验证性因素分析(CFA)和收敛效度分析。研究 3 测试了 EBA-O 在 74 名肥胖患者的临床样本中描述进食行为的能力。

结果

研究 1:EFA 确定了五个因素(即食物成瘾、夜间进食、暴食、嗜甜和餐前过食),解释了 68.3%的方差。最终的 EBA-O 由 18 个项目组成。McDonald's ω 范围在 0.80(过食)到 0.92(暴食)之间,表明具有非常好的可靠性。

研究 2:通过 CFA,二阶五因素模型显示出良好的拟合度:相对卡方/自由度(χ/df)=1.95,拟合指数(CFI)=0.93,TLI=0.92,RMSEA=0.075,SRMR=0.06,表明 EBA-O 模型是合适的。与心理病理学问卷的显著相关性表明了收敛效度。研究 3:EBA-O 各因素与情绪相关的进食行为之间存在显著关联。

结论

EBA-O 是一种可靠且易于使用的临床工具,可用于识别肥胖患者的病理性进食行为,对于非进食障碍专家尤其有用。

证据水平

五级,描述性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8944/8799412/580813e07feb/40519_2022_1363_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验