Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305.
Department of Pediatrics, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2102363119.
Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.
转移性骨肉瘤预后不良,2 年无事件生存率约为 15%至 20%,这突出表明需要推进有效的治疗方法。嵌合抗原受体(CAR)T 细胞疗法是通过利用免疫系统来消除肿瘤的有效策略。然而,在实体瘤中进行的 CAR T 细胞临床试验遇到了重大挑战,并且尚未为大量患者提供令人信服的疗效证据。CAR T 细胞疗法成功的一个主要瓶颈是我们无法使用临床成像技术来监测 CAR T 细胞在肿瘤中的积累。为了解决这个问题,我们开发了一种临床可转化的方法,用氧化铁纳米颗粒标记 CAR T 细胞,这使得可以使用磁共振成像(MRI)、光声成像(PAT)和磁性粒子成像(MPI)对铁标记的 T 细胞进行非侵入性检测。使用用于通过机械穿孔对 T 细胞进行标记的定制微流控设备,我们实现了 CAR T 细胞中显著的纳米颗粒摄取,同时保持了 T 细胞的增殖、活力和功能。多模态 MRI、PAT 和 MPI 证明了 T 细胞归巢到骨肉瘤和动物中用氧化铁纳米颗粒标记的 T 细胞的非靶部位,而在输注未标记细胞的动物中未观察到 T 细胞。本研究详细描述了用 ferumoxytol 成功标记 CAR T 细胞,从而为监测实体瘤中的 CAR T 细胞铺平了道路。