Naresh Gatta K R S, Guruprasad Lalitha
School of Chemistry, University of Hyderabad, Hyderabad, India.
J Biomol Struct Dyn. 2023 Apr;41(6):2368-2381. doi: 10.1080/07391102.2022.2032354. Epub 2022 Feb 3.
The severe acute respiratory syndrome virus-2 (SARS CoV-2) infection has resulted in the current global pandemic. The binding of SARS CoV-2 spike protein receptor-binding domain (RBD) to the human angiotensin converting enzyme-2 (ACE-2) receptor causes the host infection. The spike protein has undergone several mutations with reference to the initial strain isolated during December 2019 from Wuhan, China. A number of these mutant strains have been reported as variants of concern and as variants being monitored. Some of these mutants are known to be responsible for increased transmissibility of the virus. The reason for the increased transmissibility caused by the point mutations can be understood by studying the structural implications and inter-molecular interactions in the binding of viral spike protein RBD and human ACE-2. Here, we use the crystal structure of the RBD in complex with ACE-2 available in the public domain and analyse the 250 ns molecular dynamics (MD) simulations of wild-type and mutants; K417N, K417T, N440K, N501Y, L452R, T478K, E484K and S494P. The ionic, hydrophobic and hydrogen bond interactions, amino acid residue flexibility, binding energies and structural variations are characterized. The MD simulations provide clues to the molecular mechanisms of ACE-2 receptor binding in wild-type and mutant complexes. The mutant spike proteins RBD were associated with greater binding affinity with ACE-2 receptor.Communicated by Ramaswamy H. Sarma.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染导致了当前的全球大流行。SARS-CoV-2刺突蛋白受体结合域(RBD)与人血管紧张素转换酶2(ACE-2)受体的结合导致宿主感染。相对于2019年12月在中国武汉分离出的初始毒株,刺突蛋白发生了多次突变。其中一些突变株已被报告为关注变异株和正在监测的变异株。已知其中一些突变体导致了病毒传播性的增加。通过研究病毒刺突蛋白RBD与人类ACE-2结合中的结构影响和分子间相互作用,可以理解点突变导致传播性增加的原因。在这里,我们使用公共领域中可获得的RBD与ACE-2复合物的晶体结构,并分析野生型和突变体(K417N、K417T、N440K、N501Y、L452R、T478K、E484K和S494P)的250纳秒分子动力学(MD)模拟。对离子、疏水和氢键相互作用、氨基酸残基灵活性、结合能和结构变化进行了表征。MD模拟为野生型和突变体复合物中ACE-2受体结合的分子机制提供了线索。突变的刺突蛋白RBD与ACE-2受体具有更高的结合亲和力。由拉马斯瓦米·H·萨尔马传达。