Stawsky Alejandro, Vashistha Harsh, Salman Hanna, Brenner Naama
Interdisciplinary Program in Applied Mathematics, Technion, Haifa, Israel.
Network Biology Research Laboratories, Technion, Haifa, Israel.
iScience. 2021 Dec 28;25(2):103678. doi: 10.1016/j.isci.2021.103678. eCollection 2022 Feb 18.
In balanced exponential growth, bacteria maintain many properties statistically stable for a long time: cell size, cell cycle time, and more. As these are strongly coupled variables, it is not obvious which are directly regulated and which are stabilized through interactions. Here, we address this problem by separating timescales in bacterial single-cell dynamics. Disentangling homeostatic set points from fluctuations around them reveals that some variables, such as growth-rate, cell size and cycle time, are "sloppy" with highly volatile set points. Quantifying the relative contribution of environmental and internal sources, we find that sloppiness is primarily driven by the environment. Other variables such as fold-change define "stiff" combinations of coupled variables with robust set points. These results are manifested geometrically as a control manifold in the space of variables: set points span a wide range of values within the manifold, whereas out-of-manifold deviations are constrained. Our work offers a generalizable data-driven approach for identifying control variables in a multidimensional system.
在平衡指数生长过程中,细菌的许多特性在很长一段时间内保持统计上的稳定:细胞大小、细胞周期时间等等。由于这些是强耦合变量,所以不清楚哪些是直接受调控的,哪些是通过相互作用而稳定的。在这里,我们通过分离细菌单细胞动力学中的时间尺度来解决这个问题。将稳态设定点与围绕它们的波动区分开来表明,一些变量,如生长速率、细胞大小和周期时间,具有高度不稳定的设定点,是“松散的”。通过量化环境和内部来源的相对贡献,我们发现松散性主要由环境驱动。其他变量,如倍数变化,定义了具有稳健设定点的耦合变量的“刚性”组合。这些结果在几何上表现为变量空间中的一个控制流形:设定点在流形内跨越广泛的值范围,而流形外的偏差则受到限制。我们的工作提供了一种可推广的数据驱动方法,用于识别多维系统中的控制变量。