Suppr超能文献

一种用于快速学习的神经群体机制。

A Neural Population Mechanism for Rapid Learning.

机构信息

Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA.

Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Neural and Cognitive Engineering Group, Centre for Automation and Robotics, CSIC-UPM, 28500 Arganda del Rey, Madrid, Spain.

出版信息

Neuron. 2018 Nov 21;100(4):964-976.e7. doi: 10.1016/j.neuron.2018.09.030. Epub 2018 Oct 18.

Abstract

Long-term learning of language, mathematics, and motor skills likely requires cortical plasticity, but behavior often requires much faster changes, sometimes even after single errors. Here, we propose one neural mechanism to rapidly develop new motor output without altering the functional connectivity within or between cortical areas. We tested cortico-cortical models relating the activity of hundreds of neurons in the premotor (PMd) and primary motor (M1) cortices throughout adaptation to reaching movement perturbations. We found a signature of learning in the "output-null" subspace of PMd with respect to M1 reflecting the ability of premotor cortex to alter preparatory activity without directly influencing M1. The output-null subspace planning activity evolved with adaptation, yet the "output-potent" mapping that captures information sent to M1 was preserved. Our results illustrate a population-level cortical mechanism to progressively adjust the output from one brain area to its downstream structures that could be exploited for rapid behavioral adaptation.

摘要

长期的语言、数学和运动技能学习可能需要皮质可塑性,但行为通常需要更快的变化,有时甚至在单次错误之后。在这里,我们提出了一种神经机制,用于在不改变皮质区域内或之间功能连接的情况下,快速发展新的运动输出。我们测试了与适应到达运动扰动相关的数百个神经元在运动前皮质(PMd)和初级运动皮质(M1)中的活动的皮质间模型。我们发现,PMd 相对于 M1 的“输出空”子空间中存在学习的特征,这反映了运动前皮质改变预备活动的能力,而不会直接影响 M1。输出空子空间规划活动随着适应而演变,但捕获发送到 M1 的信息的“输出有效”映射得以保留。我们的结果说明了一种基于群体的皮质机制,可以逐渐调整一个大脑区域的输出到其下游结构,这可能被用于快速的行为适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858f/6250582/79681cbd21a4/nihms-1507895-f0001.jpg

相似文献

1
A Neural Population Mechanism for Rapid Learning.一种用于快速学习的神经群体机制。
Neuron. 2018 Nov 21;100(4):964-976.e7. doi: 10.1016/j.neuron.2018.09.030. Epub 2018 Oct 18.
3
Neural Representation and Causal Models in Motor Cortex.运动皮层中的神经表征与因果模型
J Neurosci. 2017 Mar 22;37(12):3413-3424. doi: 10.1523/JNEUROSCI.1000-16.2017. Epub 2017 Feb 20.

引用本文的文献

3
A neural manifold view of the brain.大脑的神经流形视角。
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.
4
Error encoding in human speech motor cortex.人类言语运动皮层中的错误编码。
bioRxiv. 2025 Jun 8:2025.06.07.658426. doi: 10.1101/2025.06.07.658426.
8
Prioritized learning of cross-population neural dynamics.跨群体神经动力学的优先学习
J Neural Eng. 2025 Aug 11;22(4):046040. doi: 10.1088/1741-2552/ade569.

本文引用的文献

2
Linear-nonlinear-time-warp-poisson models of neural activity.神经活动的线性-非线性-时间扭曲-泊松模型
J Comput Neurosci. 2018 Dec;45(3):173-191. doi: 10.1007/s10827-018-0696-6. Epub 2018 Oct 8.
6
Neural Population Dynamics Underlying Motor Learning Transfer.神经群体动力学在运动学习迁移中的作用。
Neuron. 2018 Mar 7;97(5):1177-1186.e3. doi: 10.1016/j.neuron.2018.01.040. Epub 2018 Feb 15.
8
Neural Manifolds for the Control of Movement.用于运动控制的神经流形
Neuron. 2017 Jun 7;94(5):978-984. doi: 10.1016/j.neuron.2017.05.025.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验