Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA.
Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Neural and Cognitive Engineering Group, Centre for Automation and Robotics, CSIC-UPM, 28500 Arganda del Rey, Madrid, Spain.
Neuron. 2018 Nov 21;100(4):964-976.e7. doi: 10.1016/j.neuron.2018.09.030. Epub 2018 Oct 18.
Long-term learning of language, mathematics, and motor skills likely requires cortical plasticity, but behavior often requires much faster changes, sometimes even after single errors. Here, we propose one neural mechanism to rapidly develop new motor output without altering the functional connectivity within or between cortical areas. We tested cortico-cortical models relating the activity of hundreds of neurons in the premotor (PMd) and primary motor (M1) cortices throughout adaptation to reaching movement perturbations. We found a signature of learning in the "output-null" subspace of PMd with respect to M1 reflecting the ability of premotor cortex to alter preparatory activity without directly influencing M1. The output-null subspace planning activity evolved with adaptation, yet the "output-potent" mapping that captures information sent to M1 was preserved. Our results illustrate a population-level cortical mechanism to progressively adjust the output from one brain area to its downstream structures that could be exploited for rapid behavioral adaptation.
长期的语言、数学和运动技能学习可能需要皮质可塑性,但行为通常需要更快的变化,有时甚至在单次错误之后。在这里,我们提出了一种神经机制,用于在不改变皮质区域内或之间功能连接的情况下,快速发展新的运动输出。我们测试了与适应到达运动扰动相关的数百个神经元在运动前皮质(PMd)和初级运动皮质(M1)中的活动的皮质间模型。我们发现,PMd 相对于 M1 的“输出空”子空间中存在学习的特征,这反映了运动前皮质改变预备活动的能力,而不会直接影响 M1。输出空子空间规划活动随着适应而演变,但捕获发送到 M1 的信息的“输出有效”映射得以保留。我们的结果说明了一种基于群体的皮质机制,可以逐渐调整一个大脑区域的输出到其下游结构,这可能被用于快速的行为适应。