文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

对 2020 年和 2021 年的新冠病毒感染确诊病例和感染天数的 95%置信区间控制线进行了对比,使用 hT 指数来评估对公共卫生的影响。

The 95% control lines on both confirmed cases and days of infection with COVID-19 were applied to compare the impact on public health between 2020 and 2021 using the hT-index.

机构信息

Department of Internal Medicine, Chi Mei Medical Center, Chiali District, Tainan, Taiwan.

Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan.

出版信息

Medicine (Baltimore). 2023 May 19;102(20):e33570. doi: 10.1097/MD.0000000000033570.


DOI:10.1097/MD.0000000000033570
PMID:37335720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10193847/
Abstract

BACKGROUND: COVID-19, the disease caused by the novel coronavirus, is now a worldwide pandemic. The number of infected people has continually increased, and currently, this pandemic continues to present challenges to public health. Scatter plots are frequently used to interpret the impact in relation to confirmed cases. However, the 95% confidence intervals are rarely given to the scatter plot. The objective of this study was to; Develop 95% control lines on daily confirmed cases and infected days for countries/regions in COVID-19 (DCCIDC) and; Examine their impacts on public health (IPH) using the hT-index. METHODS: All relevant COVID-19 data were downloaded from GitHub. The hT-index, taking all DCCIDCs into account, was applied to measure the IPHs for counties/regions. The 95% control lines were proposed to highlight the outliers of entities in COVID-19. The hT-based IPHs were compared among counties/regions between 2020 and 2021 using the choropleth map and the forest plot. The features of the hT-index were explained using the line chart and the box plot. RESULTS: The top 2 countries measured by hT-based IPHs were India and Brazil in 2020 and 2021. The outliers beyond the 95% confidence intervals were Hubei (China), with a lower hT-index favoring 2021 ( = 6.4 in 2021 vs 15.55 in 2020) and higher hT indices favoring 2021 in Thailand (28.34 vs 14,77) and Vietnam (27.05 vs 10.88). Only 3 continents of Africa, Asia, and Europe had statistically and significantly fewer DCCIDCs (denoted by the hT-index) in 2021. The hT-index generalizes the h-index and overcomes the disadvantage without taking all elements (e.g., DCCIDCs) into account in features. CONCLUSIONS: The scatter plot combined with the 95% control lines was applied to compare the IPHs hit by COVID-19 and suggested for use with the hT-index in future studies, not limited to the field of public health as we did in this research.

摘要

背景:由新型冠状病毒引起的 COVID-19 现已在全球范围内流行。感染人数不断增加,目前,这一流行病继续对公共卫生构成挑战。散点图常用于解释与确诊病例相关的影响。然而,散点图很少给出 95%置信区间。本研究的目的是:为 COVID-19(DCCIDC)国家/地区的每日确诊病例和感染日制定 95%控制线;并使用 hT-指数评估其对公共卫生的影响(IPH)。 方法:从 GitHub 下载所有相关的 COVID-19 数据。应用 hT-指数,考虑所有 DCCIDCs,来衡量各县/地区的 IPH。提出 95%控制线,以突出 COVID-19 实体的异常值。使用专题地图和森林图比较 2020 年和 2021 年各县/地区之间基于 hT 的 IPH。使用折线图和箱线图解释 hT-指数的特征。 结果:按基于 hT 的 IPH 衡量,排名前两位的国家是印度和巴西,在 2020 年和 2021 年。超出 95%置信区间的异常值是中国湖北省,2021 年 hT 指数较低(2021 年为 6.4,2020 年为 15.55),而泰国(28.34 比 14.77)和越南(27.05 比 10.88)的 hT 指数在 2021 年较高。只有非洲、亚洲和欧洲三个大洲在 2021 年的 DCCIDCs(用 hT-指数表示)数量统计上显著减少。hT-指数推广了 h-指数,并克服了不考虑特征中的所有元素(例如 DCCIDCs)的缺点。 结论:将散点图与 95%控制线相结合,用于比较 COVID-19 对公共卫生的影响,并建议在未来的研究中使用 hT-指数,而不仅仅局限于我们在这项研究中所涉及的公共卫生领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/b8eb85854499/medi-102-e33570-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/0f7ed49f2811/medi-102-e33570-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/535f7a4862e0/medi-102-e33570-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/82ff16c51255/medi-102-e33570-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/aec90ed4ae68/medi-102-e33570-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/d2045fcf7f10/medi-102-e33570-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/8c39f9579c54/medi-102-e33570-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/3b5611604b36/medi-102-e33570-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/b8eb85854499/medi-102-e33570-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/0f7ed49f2811/medi-102-e33570-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/535f7a4862e0/medi-102-e33570-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/82ff16c51255/medi-102-e33570-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/aec90ed4ae68/medi-102-e33570-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/d2045fcf7f10/medi-102-e33570-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/8c39f9579c54/medi-102-e33570-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/3b5611604b36/medi-102-e33570-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427f/10194562/b8eb85854499/medi-102-e33570-g008.jpg

相似文献

[1]
The 95% control lines on both confirmed cases and days of infection with COVID-19 were applied to compare the impact on public health between 2020 and 2021 using the hT-index.

Medicine (Baltimore). 2023-5-19

[2]
The use of the time-to-event index (Tevent) to compare the negative impact of COVID-19 on public health among continents/regions in 2020 and 2021: An observational study.

Medicine (Baltimore). 2022-12-9

[3]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2020-6-25

[4]
The heterogeneity of the COVID-19 pandemic and national responses: an explanatory mixed-methods study.

BMC Public Health. 2021-5-1

[5]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[6]
Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study.

Int J Environ Res Public Health. 2021-2-18

[7]
An online time-to-event dashboard comparing the effective control of COVID-19 among continents using the inflection point on an ogive curve: Observational study.

Medicine (Baltimore). 2021-3-12

[8]
Comparison of prediction accuracies between two mathematical models for the assessment of COVID-19 damage at the early stage and throughout 2020.

Medicine (Baltimore). 2022-8-12

[9]
Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis.

J Med Internet Res. 2021-2-3

[10]
Correlation between the migration scale index and the number of new confirmed coronavirus disease 2019 cases in China.

Epidemiol Infect. 2020-5-19

引用本文的文献

[1]
Enhancing English abstract quality for non-English speaking authors using ChatGPT: A comparative study of Taiwan, Japan, China, and South Korea with slope graphs.

Medicine (Baltimore). 2024-10-4

[2]
Using Rasch Wright map to identify hospital employee satisfaction during and before COVID-19.

Medicine (Baltimore). 2023-12-22

[3]
Exploring the top-cited literature in telerehabilitation for joint replacement using the descriptive, diagnostic, predictive, and prescriptive analytics model: A thematic and bibliometric analysis.

Medicine (Baltimore). 2023-12-1

[4]
A modern approach with follower-leading clustering algorithm for visualizing author collaborations and article themes in skin cancer research: A bibliometric analysis.

Medicine (Baltimore). 2023-11-3

[5]
Using Rasch KIDMAP to identify whether China dominates the research area of computer science (CS) based on the specialization index of article citations: Bibliometric analysis.

Medicine (Baltimore). 2023-5-19

本文引用的文献

[1]
Analysis of the COVID-19 pandemic: lessons towards a more effective response to public health emergencies.

Global Health. 2022-2-4

[2]
Visualizing the features of inflection point shown on a temporal bar graph using the data of COVID-19 pandemic.

Medicine (Baltimore). 2022-2-4

[3]
Comparing the dynamics of COVID-19 infection and mortality in the United States, India, and Brazil.

Physica D. 2022-4

[4]
Comparison of prediction accuracies between mathematical models to make projections of confirmed cases during the COVID-19 pandamic by country/region.

Medicine (Baltimore). 2021-12-17

[5]
Predicting the number of article citations on the topic of pemphigus vulgaris with the 100 top-cited articles since 2011: A protocol for systematic review and meta-analysis.

Medicine (Baltimore). 2021-8-6

[6]
Using the absolute advantage coefficient (AAC) to measure the strength of damage hit by COVID-19 in India on a growth-share matrix.

Eur J Med Res. 2021-6-24

[7]
Social policy as an integral component of pandemic response: Learning from COVID-19 in Brazil, Germany, India and the United States.

Glob Public Health. 2021

[8]
Predictive analysis of COVID-19 eradication with vaccination in India, Brazil, and U.S.A.

Infect Genet Evol. 2021-8

[9]
COVID-19 pandemic: a health challenge for commoners during the first unlock phase in India.

Z Gesundh Wiss. 2023

[10]
An online time-to-event dashboard comparing the effective control of COVID-19 among continents using the inflection point on an ogive curve: Observational study.

Medicine (Baltimore). 2021-3-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索