Alblas Dieuwertje, Suk Julian, Brune Christoph, Yeung Kak Khee, Wolterink Jelmer M
Department of Applied Mathematics, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Department of Applied Mathematics, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Med Image Anal. 2025 Apr;101:103467. doi: 10.1016/j.media.2025.103467. Epub 2025 Jan 15.
The orientation of a blood vessel as visualized in 3D medical images is an important descriptor of its geometry that can be used for centerline extraction and subsequent segmentation, labeling, and visualization. Blood vessels appear at multiple scales and levels of tortuosity, and determining the exact orientation of a vessel is a challenging problem. Recent works have used 3D convolutional neural networks (CNNs) for this purpose, but CNNs are sensitive to variations in vessel size and orientation. We present SIRE: a scale-invariant rotation-equivariant estimator for local vessel orientation. SIRE is modular and has strongly generalizing properties due to symmetry preservations. SIRE consists of a gauge equivariant mesh CNN (GEM-CNN) that operates in parallel on multiple nested spherical meshes with different sizes. The features on each mesh are a projection of image intensities within the corresponding sphere. These features are intrinsic to the sphere and, in combination with the gauge equivariant properties of GEM-CNN, lead to SO(3) rotation equivariance. Approximate scale invariance is achieved by weight sharing and use of a symmetric maximum aggregation function to combine predictions at multiple scales. Hence, SIRE can be trained with arbitrarily oriented vessels with varying radii to generalize to vessels with a wide range of calibres and tortuosity. We demonstrate the efficacy of SIRE using three datasets containing vessels of varying scales; the vascular model repository (VMR), the ASOCA coronary artery set, and an in-house set of abdominal aortic aneurysms (AAAs). We embed SIRE in a centerline tracker which accurately tracks large calibre AAAs, regardless of the data SIRE is trained with. Moreover, a tracker can use SIRE to track small-calibre tortuous coronary arteries, even when trained only with large-calibre, non-tortuous AAAs. Additional experiments are performed to verify the rotational equivariant and scale invariant properties of SIRE. In conclusion, by incorporating SO(3) and scale symmetries, SIRE can be used to determine orientations of vessels outside of the training domain, offering a robust and data-efficient solution to geometric analysis of blood vessels in 3D medical images.
在三维医学图像中可视化的血管方向是其几何形状的一个重要描述符,可用于中心线提取以及后续的分割、标记和可视化。血管以多种尺度和曲折程度出现,确定血管的精确方向是一个具有挑战性的问题。最近的工作为此使用了三维卷积神经网络(CNN),但CNN对血管大小和方向的变化很敏感。我们提出了SIRE:一种用于局部血管方向的尺度不变旋转等变估计器。SIRE是模块化的,由于保留了对称性,具有很强的泛化特性。SIRE由一个规范等变网格CNN(GEM-CNN)组成,它在多个不同大小的嵌套球形网格上并行运行。每个网格上的特征是相应球体内图像强度的投影。这些特征是球体固有的,结合GEM-CNN的规范等变特性,导致SO(3)旋转等变性。通过权重共享和使用对称最大聚合函数来组合多个尺度的预测,实现了近似尺度不变性。因此,SIRE可以用任意方向、半径不同的血管进行训练,以推广到具有广泛管径和曲折程度的血管。我们使用三个包含不同尺度血管的数据集证明了SIRE的有效性;血管模型库(VMR)、ASOCA冠状动脉集和一组内部的腹主动脉瘤(AAA)。我们将SIRE嵌入到一个中心线跟踪器中,该跟踪器可以准确跟踪大口径的AAA,无论SIRE是用什么数据训练的。此外,一个跟踪器可以使用SIRE来跟踪小口径的曲折冠状动脉,即使它只使用大口径、不曲折的AAA进行训练。还进行了额外的实验来验证SIRE的旋转等变和尺度不变特性。总之,通过纳入SO(3)和尺度对称性,SIRE可用于确定训练域之外血管的方向,为三维医学图像中血管的几何分析提供了一个强大且数据高效的解决方案。