Suppr超能文献

利用SO(3)可操纵卷积实现3D医学数据中对姿态鲁棒的语义分割。

Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data.

作者信息

Diaz Ivan, Geiger Mario, McKinley Richard Iain

机构信息

Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Inselspital, Bern University Hospital, Bern, Switzerland.

NVIDIA, Santa Clara, USA.

出版信息

J Mach Learn Biomed Imaging. 2024 May 15;2(May 2024):834-855. doi: 10.59275/j.melba.2024-7189.

Abstract

Convolutional neural networks (CNNs) allow for parameter sharing and translational equivariance by using convolutional kernels in their linear layers. By restricting these kernels to be SO(3)-steerable, CNNs can further improve parameter sharing. These rotationally-equivariant convolutional layers have several advantages over standard convolutional layers, including increased robustness to unseen poses, smaller network size, and improved sample efficiency. Despite this, most segmentation networks used in medical image analysis continue to rely on standard convolutional kernels. In this paper, we present a new family of segmentation networks that use equivariant voxel convolutions based on spherical harmonics. These networks are robust to data poses not seen during training, and do not require rotation-based data augmentation during training. In addition, we demonstrate improved segmentation performance in MRI brain tumor and healthy brain structure segmentation tasks, with enhanced robustness to reduced amounts of training data and improved parameter efficiency. Code to reproduce our results, and to implement the equivariant segmentation networks for other tasks is available at http://github.com/SCAN-NRAD/e3nn_Unet.

摘要

卷积神经网络(CNNs)通过在其线性层中使用卷积核来实现参数共享和平移不变性。通过将这些核限制为SO(3) 可操纵的,CNNs可以进一步改善参数共享。这些旋转不变卷积层相对于标准卷积层具有几个优点,包括对未见姿态的鲁棒性增强、网络规模更小以及样本效率提高。尽管如此,医学图像分析中使用的大多数分割网络仍然依赖于标准卷积核。在本文中,我们提出了一个新的分割网络家族,该家族使用基于球谐函数的不变体素卷积。这些网络对训练期间未见的数据姿态具有鲁棒性,并且在训练期间不需要基于旋转的数据增强。此外,我们在MRI脑肿瘤和健康脑结构分割任务中展示了改进的分割性能,对减少的训练数据量具有更高的鲁棒性,并提高了参数效率。可在http://github.com/SCAN-NRAD/eNN_Unet获取重现我们结果以及为其他任务实现不变分割网络的代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eab/7617181/32073b88331e/EMS201157-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验