Cortés Gianfranco, Yu Yue, Chen Robin, Armstrong Melissa, Vaillancourt David, Vemuri Baba C
University of Florida.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635204. Epub 2024 Aug 22.
Diffusion MRI (dMRI) has shown significant promise in capturing subtle changes in neural microstructure caused by neurodegenerative disorders. In this paper, we propose a novel end-to-end compound architecture for processing raw dMRI data. It consists of a 3D convolutional kernel network (CKN) that extracts macro-architectural features across voxels and a gauge equivariant Volterra network (GEVNet) on the sphere that extracts micro-architectural features from within voxels. The use of higher order convolutions enables our architecture to model spatially extended nonlinear interactions across the applied diffusion-sensitizing magnetic field gradients. The compound network is globally equivariant to 3D translations and locally equivariant to 3D rotations. We demonstrate the efficacy of our model on the classification of neurodegenerative disorders.
扩散磁共振成像(dMRI)在捕捉神经退行性疾病引起的神经微结构细微变化方面已显示出巨大潜力。在本文中,我们提出了一种用于处理原始dMRI数据的新型端到端复合架构。它由一个在体素间提取宏观结构特征的3D卷积核网络(CKN)和一个在球面上从体素内部提取微结构特征的规范等变Volterra网络(GEVNet)组成。高阶卷积的使用使我们的架构能够对应用的扩散敏感磁场梯度上的空间扩展非线性相互作用进行建模。该复合网络在全局上对3D平移等变,在局部上对3D旋转等变。我们展示了我们的模型在神经退行性疾病分类方面的有效性。