Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Ticks Tick Borne Dis. 2022 May;13(3):101910. doi: 10.1016/j.ttbdis.2022.101910. Epub 2022 Jan 31.
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
神经节是蜱的中枢神经系统,因此控制着蜱的生理机能。它通过产生和释放信号分子来实现这一点,其中许多是神经肽。这些肽可以作为神经递质、神经调质和/或神经激素发挥作用,尽管在大多数情况下,它们的功能仍有待确定。我们鉴定并对 Rhipicephalus microplus 不同生命阶段和器官中的神经肽进行了计算机分析,从卵巢、唾液腺、脂肪体、中肠和胚胎中生成转录组。神经节转录本的注释导致了 32 种功能蛋白类别的鉴定,其中最丰富的是:分泌蛋白、能量代谢和氧化代谢/解毒。神经肽前体是 R. microplus 神经节中过度表达的序列之一,与其他阶段/器官相比,转录水平至少高出 5 倍。共鉴定出 52 种神经肽前体:ACP、achatin、allatostatins A、CC 和 CCC、allatotropin、bursicon A/B、降钙素 A 和 B、CCAP、CCHamide、CCRFamide、CCH/ITP、corazonin、DH31、DH44、蜕皮激素、EFLamide、EFLGGPamide、elevenin、ETH、FMRFamide myosuppressin-like、glycoprotein A2/B5、gonadulin、IGF、inotocin、胰岛素样肽、iPTH、leucokinin、myoinhibitory peptide、NPF 1 和 2、or cockinin、proctolin、pyrokinin/periviscerokinin、relaxin、RYamide、SIFamide、sNPF、sulfakinin、tachykinin 和 trissin。其中一些神经肽以前在蜱中没有报道过,因为 ETH 的存在最初是在包括蜱和螨在内的 Parasitiformes 中明确鉴定出来的。从其他物种的这些肽的可用信息、保守结构域和基序来预测成熟神经肽从前体序列的预测。几乎所有鉴定出的神经肽也存在于其他蜱种中。对神经肽及其各自受体在蜱生理机能中的作用进行表征,可以帮助评估它们作为药物靶点的潜力。