文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle.

作者信息

Li Qianqian, Shi Zhaoqing, Zhang Fan, Zeng Weiwei, Zhu Dunwan, Mei Lin

机构信息

School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.

Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

出版信息

Acta Pharm Sin B. 2022 Jan;12(1):107-134. doi: 10.1016/j.apsb.2021.05.031. Epub 2021 Jun 2.


DOI:10.1016/j.apsb.2021.05.031
PMID:35127375
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8799879/
Abstract

The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer-immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer-immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer-immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer-immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/a94c0e370122/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/16cd2a739339/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/8cea5032d891/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/05b5af5a9a3b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/6772e49f62d2/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/b3cfd42499ec/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/94c697c3a510/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/7aaceff457c8/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/e80b4b0e413c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/750cf8b78e65/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/2ab9f87b9d89/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/3bff49ba412a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/31d7af0eb363/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/a4ea898c04f8/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/a94c0e370122/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/16cd2a739339/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/8cea5032d891/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/05b5af5a9a3b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/6772e49f62d2/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/b3cfd42499ec/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/94c697c3a510/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/7aaceff457c8/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/e80b4b0e413c/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/750cf8b78e65/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/2ab9f87b9d89/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/3bff49ba412a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/31d7af0eb363/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/a4ea898c04f8/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d082/8799879/a94c0e370122/gr13.jpg

相似文献

[1]
Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle.

Acta Pharm Sin B. 2022-1

[2]
Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle.

Adv Mater. 2022-12

[3]
Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-7

[4]
Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy.

ACS Biomater Sci Eng. 2020-9-14

[5]
Immunoengineering with biomaterials for enhanced cancer immunotherapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-1-14

[6]
Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy.

Acc Chem Res. 2020-9-15

[7]
Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death.

Int J Nanomedicine. 2021

[8]
Nanomaterial-assisted delivery of CpG oligodeoxynucleotides for boosting cancer immunotherapy.

J Control Release. 2024-12

[9]
Tumor-Targeted Nanomedicine for Immunotherapy.

Acc Chem Res. 2020-12-15

[10]
Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches.

J Pers Med. 2024-1-4

引用本文的文献

[1]
Engineering strategies of sequential drug delivery systems for combination tumor immunotherapy.

Acta Pharm Sin B. 2025-8

[2]
A cisplatin prodrug-based self-assembling ozone delivery nanosystem sensitizes radiotherapy in triple-negative breast cancer.

Acta Pharm Sin B. 2025-5

[3]
siRNA micelleplexes-mediated glutamine metabolism re-engineering for vascular normalization-boosted photo-immunotherapy.

Acta Pharm Sin B. 2025-4

[4]
Intravenous delivery of STING agonists using acid-sensitive polycationic polymer-modified lipid nanoparticles for enhanced tumor immunotherapy.

Acta Pharm Sin B. 2025-3

[5]
Unleashing the Potential of Metal Ions in cGAS-STING Activation: Advancing Nanomaterial-Based Tumor Immunotherapy.

ACS Omega. 2025-3-17

[6]
Nanomaterials for targeted drug delivery for immunotherapy of digestive tract tumors.

Front Immunol. 2025-3-5

[7]
Recent advances in the bench-to-bedside translation of cancer nanomedicines.

Acta Pharm Sin B. 2025-1

[8]
Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges.

Mol Cancer. 2025-1-18

[9]
Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors.

Mol Cancer. 2024-12-23

[10]
Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin.

Front Pharmacol. 2024-12-3

本文引用的文献

[1]
Blue light-triggered Fe-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy.

Biomaterials. 2021-4

[2]
Two drugs for advanced HER2-positive breast cancer (Enhertu and Tukysa).

Med Lett Drugs Ther. 2020-11-16

[3]
A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis.

Sci Adv. 2020-9-4

[4]
A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics.

Sci Adv. 2020-7-15

[5]
Hollow Magnetic Nanocatalysts Drive Starvation-Chemodynamic-Hyperthermia Synergistic Therapy for Tumor.

ACS Nano. 2020-8-25

[6]
Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy.

Nat Commun. 2020-7-20

[7]
Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy.

J Control Release. 2020-10-10

[8]
An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy.

Nano Lett. 2020-7-8

[9]
Biodegradable Poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic cancer therapy.

Biomaterials. 2020-9

[10]
Enhanced Ferroptosis by Oxygen-Boosted Phototherapy Based on a 2-in-1 Nanoplatform of Ferrous Hemoglobin for Tumor Synergistic Therapy.

ACS Nano. 2020-3-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索