State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China; School of Life Sciences, Xiamen University, Xiamen, 361102, China.
Biosens Bioelectron. 2022 May 1;203:114032. doi: 10.1016/j.bios.2022.114032. Epub 2022 Jan 31.
SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.
关注的严重急性呼吸综合征冠状病毒 2 型变异株 (VOCs) 在受体结合区域 (RBD) 的关键部位含有几个单核苷酸变异 (SNVs),这些变异增强了感染力和传播性,并导致免疫逃逸,从而导致 2019 年冠状病毒病 (COVID-19) 大流行恶化。新兴的 VOCs 引发了对能够同时监测这些 SNVs 的诊断方法的需求。迄今为止,还没有一种高度敏感、有效的临床工具能够同时监测 SNVs。在这里,我们提出了一种可编码的多重微球相扩增 (MMPA) 传感平台,它结合了引物编码微球技术和双荧光解码策略,用于检测 SARS-CoV-2 RNA,并同时识别 RBD 中的 10 个关键 SNVs。MMPA 将扩增受阻突变系统 PCR (ARMS-PCR) 反应限制在具有特定荧光编码的微球表面上,用于特定靶序列。这有效地解决了多重 PCR 中引物和探针之间非特异性扩增的问题。对于信号检测,微球内的特定荧光码用于确定微球与 SNV 位点之间的对应关系,而与 PCR 产物杂交的报告探针用于检测微球扩增强度。MMPA 平台提供了更低的 SARS-CoV-2 RNA 检测下限为 28 个拷贝/反应,能够检测呼吸道病原体谱而不发生交叉反应,并且 SNV 分析准确度与测序相当。此外,这种超级多重平行 SNVs 检测方法能够及时更新伴随 VOC 变化而检测到的 SNV 面板,并具有传统测序方法所不具备的临床可用性。