Suppr超能文献

高通量基因组编辑方法:越多越好。

High-throughput methods for genome editing: the more the better.

机构信息

State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.

出版信息

Plant Physiol. 2022 Mar 28;188(4):1731-1745. doi: 10.1093/plphys/kiac017.

Abstract

During the last decade, targeted genome-editing technologies, especially clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) technologies, have permitted efficient targeting of genomes, thereby modifying these genomes to offer tremendous opportunities for deciphering gene function and engineering beneficial traits in many biological systems. As a powerful genome-editing tool, the CRISPR/Cas systems, combined with the development of next-generation sequencing and many other high-throughput techniques, have thus been quickly developed into a high-throughput engineering strategy in animals and plants. Therefore, here, we review recent advances in using high-throughput genome-editing technologies in animals and plants, such as the high-throughput design of targeted guide RNA (gRNA), construction of large-scale pooled gRNA, and high-throughput genome-editing libraries, high-throughput detection of editing events, and high-throughput supervision of genome-editing products. Moreover, we outline perspectives for future applications, ranging from medication using gene therapy to crop improvement using high-throughput genome-editing technologies.

摘要

在过去的十年中,靶向基因组编辑技术,特别是成簇规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白(Cas)技术,已经允许对基因组进行高效靶向,从而修饰这些基因组,为破译基因功能和在许多生物系统中工程有益性状提供了巨大的机会。作为一种强大的基因组编辑工具,CRISPR/Cas 系统与下一代测序和许多其他高通量技术的发展相结合,已经迅速发展成为动植物的高通量工程策略。因此,在这里,我们综述了在动植物中使用高通量基因组编辑技术的最新进展,例如靶向向导 RNA(gRNA)的高通量设计、大规模 pooled gRNA 的构建、高通量基因组编辑文库、编辑事件的高通量检测以及基因组编辑产物的高通量监管。此外,我们概述了未来应用的前景,从使用基因治疗的药物到使用高通量基因组编辑技术的作物改良。

相似文献

1
High-throughput methods for genome editing: the more the better.
Plant Physiol. 2022 Mar 28;188(4):1731-1745. doi: 10.1093/plphys/kiac017.
2
[Advances in CRISPR-Cas-mediated genome editing system in plants].
Sheng Wu Gong Cheng Xue Bao. 2017 Oct 25;33(10):1712-1722. doi: 10.13345/j.cjb.170170.
3
Genome Editing in Plants: Exploration of Technological Advancements and Challenges.
Cells. 2019 Nov 4;8(11):1386. doi: 10.3390/cells8111386.
4
5
6
CRISPR-Cas systems: ushering in the new genome editing era.
Bioengineered. 2018;9(1):214-221. doi: 10.1080/21655979.2018.1470720.
7
Genome-scale CRISPR pooled screens.
Anal Biochem. 2017 Sep 1;532:95-99. doi: 10.1016/j.ab.2016.05.014. Epub 2016 Jun 1.
8
Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
Semin Cell Dev Biol. 2019 Dec;96:107-114. doi: 10.1016/j.semcdb.2019.04.012. Epub 2019 Apr 24.
9
CRISPR/Cas: A powerful tool for gene function study and crop improvement.
J Adv Res. 2020 Oct 21;29:207-221. doi: 10.1016/j.jare.2020.10.003. eCollection 2021 Mar.
10
Engineering guide RNA to reduce the off-target effects of CRISPR.
J Genet Genomics. 2019 Nov 20;46(11):523-529. doi: 10.1016/j.jgg.2019.11.003. Epub 2019 Nov 23.

引用本文的文献

1
Hazelnut allergome overview and Cor a gRNAs identification.
BMC Plant Biol. 2025 May 19;25(1):661. doi: 10.1186/s12870-025-06685-6.
2
Precise Electromagnetic Modulation of the Cell Cycle and Its Applications in Cancer Therapy.
Int J Mol Sci. 2025 May 7;26(9):4445. doi: 10.3390/ijms26094445.
8
Inflammasome-related gene signatures as prognostic biomarkers in osteosarcoma.
J Cell Mol Med. 2024 May;28(9):e18286. doi: 10.1111/jcmm.18286.
9
Plant genome information facilitates plant functional genomics.
Planta. 2024 Apr 9;259(5):117. doi: 10.1007/s00425-024-04397-z.
10
Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective.
Adv Genet (Hoboken). 2023 Nov 27;5(1):2300203. doi: 10.1002/ggn2.202300203. eCollection 2024 Mar.

本文引用的文献

1
A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases.
Mol Plant. 2022 Feb 7;15(2):243-257. doi: 10.1016/j.molp.2021.09.015. Epub 2021 Oct 4.
2
INSIDER: alignment-free detection of foreign DNA sequences.
Comput Struct Biotechnol J. 2021 Jun 29;19:3810-3816. doi: 10.1016/j.csbj.2021.06.045. eCollection 2021.
3
Large-Scale Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities.
Front Bioeng Biotechnol. 2021 Jun 22;9:689797. doi: 10.3389/fbioe.2021.689797. eCollection 2021.
4
Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice: a model genome editing system for oil palm.
J Genet Eng Biotechnol. 2021 Jun 11;19(1):86. doi: 10.1186/s43141-021-00185-4.
5
Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice.
Nat Plants. 2021 Jul;7(7):888-892. doi: 10.1038/s41477-021-00942-w. Epub 2021 Jun 10.
6
Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning.
Nat Commun. 2021 May 28;12(1):3238. doi: 10.1038/s41467-021-23576-0.
7
Whole-genome sequencing reveals rare off-target mutations in CRISPR/Cas9-edited grapevine.
Hortic Res. 2021 May 1;8(1):114. doi: 10.1038/s41438-021-00549-4.
8
CRISPR screens in plants: approaches, guidelines, and future prospects.
Plant Cell. 2021 May 31;33(4):794-813. doi: 10.1093/plcell/koab099.
9
Applications of CRISPR-Cas in agriculture and plant biotechnology.
Nat Rev Mol Cell Biol. 2020 Nov;21(11):661-677. doi: 10.1038/s41580-020-00288-9. Epub 2020 Sep 24.
10
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验