Suppr超能文献

相似文献

1
CRISPR screens in plants: approaches, guidelines, and future prospects.
Plant Cell. 2021 May 31;33(4):794-813. doi: 10.1093/plcell/koab099.
2
CRISPR Screens in Plants: Approaches, Guidelines, and Future Prospects.
Plant Cell. 2020 Aug 25. doi: 10.1105/tpc.20.00463.
3
Functional Genomics via CRISPR-Cas.
J Mol Biol. 2019 Jan 4;431(1):48-65. doi: 10.1016/j.jmb.2018.06.034. Epub 2018 Jun 28.
4
CRISPR-Cas systems: ushering in the new genome editing era.
Bioengineered. 2018;9(1):214-221. doi: 10.1080/21655979.2018.1470720.
5
CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects.
Plant Cell Rep. 2016 Jul;35(7):1417-27. doi: 10.1007/s00299-016-1985-z. Epub 2016 Apr 25.
6
CRISPR/Cas9-mediated genome editing in plants.
Methods. 2017 May 15;121-122:94-102. doi: 10.1016/j.ymeth.2017.03.009. Epub 2017 Mar 14.
7
Genome-scale CRISPR pooled screens.
Anal Biochem. 2017 Sep 1;532:95-99. doi: 10.1016/j.ab.2016.05.014. Epub 2016 Jun 1.
8
The rise and future of CRISPR-based approaches for high-throughput genomics.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae020.
9
High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
Mol Cell. 2017 Oct 5;68(1):44-59. doi: 10.1016/j.molcel.2017.09.017.
10
CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.
Curr Protoc Mol Biol. 2016 Jul 1;115:31.6.1-31.6.21. doi: 10.1002/cpmb.10.

引用本文的文献

2
Small signaling peptides define leaf longevity.
Front Plant Sci. 2025 Jun 20;16:1616650. doi: 10.3389/fpls.2025.1616650. eCollection 2025.
4
A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants.
Plant Cell. 2025 Apr 2;37(4). doi: 10.1093/plcell/koaf081.
5
A micropeptide regulates seed desiccation.
Front Plant Sci. 2025 Mar 26;16:1550190. doi: 10.3389/fpls.2025.1550190. eCollection 2025.
6
CRISPR-Cas applications in agriculture and plant research.
Nat Rev Mol Cell Biol. 2025 Mar 7. doi: 10.1038/s41580-025-00834-3.
7
8
Jan and mini-Jan, a model system for potato functional genomics.
Plant Biotechnol J. 2025 Apr;23(4):1243-1256. doi: 10.1111/pbi.14582. Epub 2025 Jan 23.
10
Malicious DNS detection by combining improved transformer and CNN.
Sci Rep. 2024 Dec 4;14(1):30248. doi: 10.1038/s41598-024-81189-1.

本文引用的文献

1
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
2
Prediction of the sequence-specific cleavage activity of Cas9 variants.
Nat Biotechnol. 2020 Nov;38(11):1328-1336. doi: 10.1038/s41587-020-0537-9. Epub 2020 Jun 8.
3
Efficient CRISPR/Cas9-based plant genomic fragment deletions by microhomology-mediated end joining.
Plant Biotechnol J. 2020 Nov;18(11):2161-2163. doi: 10.1111/pbi.13390. Epub 2020 May 22.
4
Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform.
Nat Biotechnol. 2020 May;38(5):638-648. doi: 10.1038/s41587-020-0437-z. Epub 2020 Mar 16.
5
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
6
Multiplexed CRISPR technologies for gene editing and transcriptional regulation.
Nat Commun. 2020 Mar 9;11(1):1281. doi: 10.1038/s41467-020-15053-x.
7
High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation.
Cell Rep. 2020 Mar 3;30(9):2859-2868.e5. doi: 10.1016/j.celrep.2020.02.010.
8
High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize.
Plant Cell. 2020 May;32(5):1397-1413. doi: 10.1105/tpc.19.00934. Epub 2020 Feb 25.
9
A large-scale resource for tissue-specific CRISPR mutagenesis in .
Elife. 2020 Feb 13;9:e53865. doi: 10.7554/eLife.53865.
10
Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms.
Mol Plant. 2020 Apr 6;13(4):565-572. doi: 10.1016/j.molp.2020.01.010. Epub 2020 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验