School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Sci Rep. 2022 Feb 9;12(1):2173. doi: 10.1038/s41598-022-06085-y.
Radiogenomics relationships (RRs) aims to identify statistically significant correlations between medical image features and molecular characteristics from analysing tissue samples. Previous radiogenomics studies mainly relied on a single category of image feature extraction techniques (ETs); these are (i) handcrafted ETs that encompass visual imaging characteristics, curated from knowledge of human experts and, (ii) deep ETs that quantify abstract-level imaging characteristics from large data. Prior studies therefore failed to leverage the complementary information that are accessible from fusing the ETs. In this study, we propose a fused feature signature (FF): a selection of image features from handcrafted and deep ETs (e.g., transfer learning and fine-tuning of deep learning models). We evaluated the FF's ability to better represent RRs compared to individual ET approaches with two public datasets: the first dataset was used to build the FF using 89 patients with non-small cell lung cancer (NSCLC) comprising of gene expression data and CT images of the thorax and the upper abdomen for each patient; the second NSCLC dataset comprising of 117 patients with CT images and RNA-Seq data and was used as the validation set. Our results show that our FF encoded complementary imaging characteristics of tumours and identified more RRs with a broader range of genes that are related to important biological functions such as tumourigenesis. We suggest that the FF has the potential to identify important RRs that may assist cancer diagnosis and treatment in the future.
放射组学关系 (RRs) 旨在通过分析组织样本,识别医学图像特征与分子特征之间具有统计学意义的相关性。先前的放射组学研究主要依赖于单一类别图像特征提取技术 (ETs);这些技术包括:(i) 手工 ETs,它包含了从人类专家知识中整理出来的视觉成像特征;以及 (ii) 从大数据中量化抽象级成像特征的深度学习 ETs。因此,先前的研究未能利用从融合 ETs 中获得的互补信息。在这项研究中,我们提出了一种融合特征特征 (FF):从手工和深度学习 ETs 中选择的图像特征(例如,迁移学习和深度学习模型的微调)。我们使用两个公共数据集来评估 FF 与单个 ET 方法相比更好地表示 RRs 的能力:第一个数据集用于使用 89 名非小细胞肺癌 (NSCLC) 患者构建 FF,这些患者包括每个患者的基因表达数据和胸部及上腹部的 CT 图像;第二个 NSCLC 数据集包含 117 名患者的 CT 图像和 RNA-Seq 数据,用作验证集。我们的结果表明,我们的 FF 编码了肿瘤的互补成像特征,并确定了与肿瘤发生等重要生物学功能相关的更广泛范围的基因的更多 RRs。我们建议 FF 具有识别可能有助于癌症诊断和治疗的重要 RRs 的潜力。