Suppr超能文献

用于光电子应用的原子级薄石墨烯模板上有机半导体薄膜的范德华外延生长

van der Waals Epitaxy of Organic Semiconductor Thin Films on Atomically Thin Graphene Templates for Optoelectronic Applications.

作者信息

Nguyen Nguyen Ngan, Lee Hansol, Lee Hyo Chan, Cho Kilwon

机构信息

Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.

出版信息

Acc Chem Res. 2022 Mar 1;55(5):673-684. doi: 10.1021/acs.accounts.1c00686. Epub 2022 Feb 10.

Abstract

ConspectusOrganic semiconductors (OSCs) offer unique advantages with respect to mechanical flexibility, low-cost processing, and tunable properties. The optical and electrical properties of devices based on OSCs can be greatly improved when an OSC is coupled with graphene in a certain manner. Our research group has focused on using graphene as a growth template for OSCs and incorporating such high-quality heterostructures into optoelectronic devices. The idea is that graphene's atomically flat surface with a uniform sp carbon network can serve as a perfect quasi-epitaxial template for the growth of OSCs. In addition, OSC-graphene heterostructures benefit from graphene's unique characteristics, such as its high charge-carrier mobility, excellent optical transparency, and fascinating mechanical durability and flexibility.However, we have often found that OSC molecules assemble on graphene in unpredictable manners that vary from batch to batch. From observations of numerous research systems, we elucidated the mechanism underlying such poor repeatability and set out a framework to actually control the template effect of graphene on OSCs. In this Account, we not only present our scientific findings in this spectrum of areas but also convey our research scheme to the readers so that similar heterostructure complexes can be systematically studied.We began with experiments showing that the growth of OSCs on a graphene surface was driven by van der Waals interactions and is therefore sensitive to the cleanliness of the graphene surface. Nonetheless, we noted that, even on similarly clean graphene surfaces, the OSC thin film still varied with the underlying substrate. Thanks to the graphene-transfer method and in situ gating methods that we developed, we discovered that the decisive parameter for molecule-graphene interaction (and, hence, for the growth of OSCs on graphene) is the charge density in the graphene. Thus, to prepare a graphene template for high-quality graphene-OSC heterostructures, we controlled the charge density in the graphene to minimize the molecule-graphene interaction. Moreover, the possible charge transfer between OSC molecules and graphene, which induces additional molecule-graphene interactions, should also be taken into account. Eventually, we demonstrated a wide range of optoelectronic applications that benefitted from high-quality OSC-graphene heterostructures fabricated using our proof-of-concept systems.

摘要

综述

有机半导体(OSCs)在机械柔韧性、低成本加工和可调节性能方面具有独特优势。当有机半导体以某种方式与石墨烯耦合时,基于有机半导体的器件的光学和电学性能可以得到极大改善。我们的研究小组专注于将石墨烯用作有机半导体的生长模板,并将这种高质量的异质结构整合到光电器件中。其理念是,具有均匀sp碳网络的石墨烯原子级平整表面可以作为有机半导体生长的完美准外延模板。此外,有机半导体-石墨烯异质结构受益于石墨烯的独特特性,如高载流子迁移率、优异的光学透明度以及出色的机械耐久性和柔韧性。

然而,我们经常发现有机半导体分子以不可预测的方式在石墨烯上组装,批次之间存在差异。通过对众多研究系统的观察,我们阐明了这种可重复性差的潜在机制,并提出了一个框架来实际控制石墨烯对有机半导体的模板效应。在本报告中,我们不仅展示了在这一系列领域的科学发现,还向读者传达了我们的研究方案,以便能够系统地研究类似的异质结构复合物。

我们首先进行的实验表明,有机半导体在石墨烯表面的生长是由范德华相互作用驱动的,因此对石墨烯表面的清洁度敏感。尽管如此,我们注意到,即使在同样清洁的石墨烯表面上,有机半导体薄膜仍会因底层衬底而有所不同。得益于我们开发的石墨烯转移方法和原位门控方法,我们发现分子与石墨烯相互作用(进而有机半导体在石墨烯上的生长)的决定性参数是石墨烯中的电荷密度。因此,为了制备用于高质量石墨烯-有机半导体异质结构的石墨烯模板,我们控制石墨烯中的电荷密度以最小化分子与石墨烯的相互作用。此外,还应考虑有机半导体分子与石墨烯之间可能的电荷转移,这会引发额外的分子与石墨烯相互作用。最终,我们展示了一系列受益于使用我们的概念验证系统制造的高质量有机半导体-石墨烯异质结构的光电子应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验