Nguyen Nguyen Ngan, Lee Hyo Chan, Yoo Min Seok, Lee Eunho, Lee Hansol, Lee Seon Baek, Cho Kilwon
Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea.
Adv Sci (Weinh). 2020 Feb 14;7(6):1902315. doi: 10.1002/advs.201902315. eCollection 2020 Mar.
Controlling the growth behavior of organic semiconductors (OSCs) is essential because it determines their optoelectronic properties. In order to accomplish this, graphene templates with electronic-state tunability are used to affect the growth of OSCs by controlling the van der Waals interaction between OSC ad-molecules and graphene. However, in many graphene-molecule systems, the charge transfer between an ad-molecule and a graphene template causes another important interaction. This charge-transfer-induced interaction is never considered in the growth scheme of OSCs. Here, the effects of charge transfer on the formation of graphene-OSC heterostructures are investigated, using fullerene (C) as a model compound. By in situ electrical doping of a graphene template to suppress the charge transfer between C ad-molecules and graphene, the layer-by-layer growth of a C film on graphene can be achieved. Under this condition, the graphene-C interface is free of Fermi-level pinning; thus, barristors fabricated on the graphene-C interface show a nearly ideal Schottky-Mott limit with efficient modulation of the charge-injection barrier. Moreover, the optimized C film exhibits a high field-effect electron mobility of 2.5 cm V s. These results provide an efficient route to engineering highly efficient optoelectronic graphene-OSC hybrid material applications.
控制有机半导体(OSCs)的生长行为至关重要,因为这决定了它们的光电特性。为了实现这一点,具有电子态可调性的石墨烯模板被用于通过控制OSC吸附分子与石墨烯之间的范德华相互作用来影响OSC的生长。然而,在许多石墨烯 - 分子系统中,吸附分子与石墨烯模板之间的电荷转移会引发另一种重要的相互作用。在OSCs的生长过程中,这种电荷转移诱导的相互作用从未被考虑过。在此,以富勒烯(C)作为模型化合物,研究了电荷转移对石墨烯 - OSC异质结构形成的影响。通过对石墨烯模板进行原位电掺杂以抑制C吸附分子与石墨烯之间的电荷转移,可以实现C薄膜在石墨烯上的逐层生长。在这种条件下,石墨烯 - C界面不存在费米能级钉扎现象;因此,在石墨烯 - C界面上制备的压控电阻器表现出近乎理想的肖特基 - 莫特极限,且电荷注入势垒得到有效调制。此外,优化后的C薄膜展现出2.5 cm² V⁻¹ s⁻¹的高场效应电子迁移率。这些结果为设计高效的光电石墨烯 - OSC混合材料应用提供了一条有效途径。