Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109-8055, USA.
Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109-8055, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109-8055, USA.
Mol Ther. 2022 Jun 1;30(6):2176-2185. doi: 10.1016/j.ymthe.2022.02.003. Epub 2022 Feb 8.
Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.
基因编辑在纠正或绕过杜氏肌营养不良症(DMD)中的肌营养不良蛋白突变方面显示出了前景。然而,临床前研究主要集中在肌肉纤维化和萎缩有限的年轻动物上,因此有利于肌肉转导、肌核编辑和疾病进展的预防。在这里,我们研究了在 3 岁和 8 岁的 CXMD 犬中经肌肉内递送 AAV6:CK8e-CRISPR/SaCas9 后肌肉特异性肌营养不良蛋白基因编辑,并与 6 周后 AAV6:CK8e-微肌营养不良蛋白基因替代治疗进行了定性比较。基因编辑通过切除包含外显子 6-8 的 105kb 突变区域,在大约 1.3%的基因组和高达 4.0%的肌营养不良蛋白转录本中恢复了肌营养不良蛋白的阅读框。然而,使用微肌营养不良蛋白基因转移,肌营养不良蛋白的表达水平和对肌肉病理学的影响更大。这项研究表明,我们的肌肉特异性多外显子缺失策略可以纠正一个年龄较大的动物 DMD 模型中肌营养不良蛋白基因的一个常见突变区域,但强调需要进一步增强,以达到与 AAV 微肌营养不良蛋白相当的效率。我们的观察结果还表明,干预时肌肉病理学的疗效和状态是相关的,这表明需要与年龄和疾病进展相关的额外方法优化,以实现基于 CRISPR 的治疗方法在所有 DMD 患者中的相关临床转化。