Suppr超能文献

一种针对小鼠后爪微型计算机断层扫描(micro-CT)数据集的高通量半自动骨分割工作流程。

A high-throughput semi-automated bone segmentation workflow for murine hindpaw micro-CT datasets.

作者信息

Kenney H Mark, Peng Yue, Chen Kiana L, Ajalik Raquel, Schnur Lindsay, Wood Ronald W, Schwarz Edward M, Awad Hani A

机构信息

Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY 14642, USA.

Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, USA.

出版信息

Bone Rep. 2022 Jan 20;16:101167. doi: 10.1016/j.bonr.2022.101167. eCollection 2022 Jun.

Abstract

INTRODUCTION

Micro-computed tomography (μCT) is a valuable imaging modality for longitudinal quantification of bone volumes to identify disease or treatment effects for a broad range of conditions that affect bone health. Complex structures, such as the hindpaw with up to 31 distinct bones in mice, have considerable analytic potential, but quantification is often limited to a single bone volume metric due to the intensive effort of manual segmentation. Herein, we introduce a high-throughput, user-friendly, and semi-automated method for segmentation of murine hindpaw μCT datasets.

METHODS

μCT was performed on male ( = 4; 2-8-months) and female (n = 4; 2-5-months) C57BL/6 mice longitudinally each month. Additional 9.5-month-old male C57BL/6 hindpaws ( = 6 hindpaws) were imaged by μCT to investigate the effects of resolution and integration time on analysis outcomes. The DICOMs were exported to Amira software for the watershed-based segmentation, and watershed markers were generated automatically at approximately 80% accuracy before user correction. The semi-automated segmentation method utilizes the original data, binary mask, and bone-specific markers that expand to the full volume of the bone using watershed algorithms.

RESULTS

Compared to the conventional manual segmentation using Scanco software, the semi-automated approach produced similar raw bone volumes. The semi-automated segmentation also demonstrated a significant reduction in segmentation time for both experienced and novice users compared to standard manual segmentation. ICCs between experienced and novice users were >0.9 (excellent reliability) for all but 4 bones.

DISCUSSION

The described semi-automated segmentation approach provides remarkable reliability and throughput advantages. Adoption of the semi-automated segmentation approach will provide standardization and reliability of bone volume measures across experienced and novice users and between institutions. The application of this model provides a considerable strategic advantage to accelerate various research opportunities in pre-clinical bone and joint analysis towards clinical translation.

摘要

引言

微计算机断层扫描(μCT)是一种有价值的成像方式,可纵向定量骨体积,以识别影响骨骼健康的广泛病症的疾病或治疗效果。复杂结构,如小鼠后爪中多达31块不同的骨头,具有相当大的分析潜力,但由于手动分割工作量大,定量通常仅限于单一骨体积指标。在此,我们介绍一种用于分割小鼠后爪μCT数据集的高通量、用户友好的半自动方法。

方法

每月对雄性(n = 4;2 - 8个月)和雌性(n = 4;2 - 5个月)C57BL/6小鼠进行纵向μCT扫描。另外对9.5月龄雄性C57BL/6后爪(n = 6只后爪)进行μCT成像,以研究分辨率和积分时间对分析结果的影响。将DICOM文件导出到Amira软件进行基于分水岭的分割,在用户校正前自动生成准确率约为80%的分水岭标记。半自动分割方法利用原始数据、二进制掩码和特定于骨骼的标记,通过分水岭算法扩展到骨骼的整个体积。

结果

与使用Scanco软件的传统手动分割相比,半自动方法产生的原始骨体积相似。与标准手动分割相比,半自动分割在经验丰富和新手用户中均显示出分割时间显著减少。除4块骨头外,经验丰富和新手用户之间的组内相关系数(ICC)均>0.9(可靠性极佳)。

讨论

所描述的半自动分割方法具有显著的可靠性和通量优势。采用半自动分割方法将为经验丰富和新手用户以及不同机构之间的骨体积测量提供标准化和可靠性。该模型的应用为加速临床前骨与关节分析向临床转化的各种研究机会提供了相当大的战略优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf70/8816671/9870279cd26d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验