Suppr超能文献

深度学习提高小鼠骨髓纤维化模型胫骨体积分割的可重复性。

Improved Repeatability of Mouse Tibia Volume Segmentation in Murine Myelofibrosis Model Using Deep Learning.

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Tomography. 2023 Mar 7;9(2):589-602. doi: 10.3390/tomography9020048.

Abstract

A murine model of myelofibrosis in tibia was used in a co-clinical trial to evaluate segmentation methods for application of image-based biomarkers to assess disease status. The dataset (32 mice with 157 3D MRI scans including 49 test-retest pairs scanned on consecutive days) was split into approximately 70% training, 10% validation, and 20% test subsets. Two expert annotators (EA1 and EA2) performed manual segmentations of the mouse tibia (EA1: all data; EA2: test and validation). Attention U-net (A-U-net) model performance was assessed for accuracy with respect to EA1 reference using the average Jaccard index (AJI), volume intersection ratio (AVI), volume error (AVE), and Hausdorff distance (AHD) for four training scenarios: full training, two half-splits, and a single-mouse subsets. The repeatability of computer versus expert segmentations for tibia volume of test-retest pairs was assessed by within-subject coefficient of variance (%wCV). A-U-net models trained on full and half-split training sets achieved similar average accuracy (with respect to EA1 annotations) for test set: AJI = 83-84%, AVI = 89-90%, AVE = 2-3%, and AHD = 0.5 mm-0.7 mm, exceeding EA2 accuracy: AJ = 81%, AVI = 83%, AVE = 14%, and AHD = 0.3 mm. The A-U-net model repeatability wCV [95% CI]: 3 [2, 5]% was notably better than that of expert annotators EA1: 5 [4, 9]% and EA2: 8 [6, 13]%. The developed deep learning model effectively automates murine bone marrow segmentation with accuracy comparable to human annotators and substantially improved repeatability.

摘要

使用骨髓纤维化的胫骨鼠模型进行临床前研究,以评估基于图像的生物标志物应用于评估疾病状态的分割方法。该数据集(32 只小鼠,包含 157 个 3D MRI 扫描,其中 49 对为连续日扫描的测试-再测试对)分为约 70%的训练集、10%的验证集和 20%的测试子集。两位专家注释员(EA1 和 EA2)对小鼠胫骨进行了手动分割(EA1:所有数据;EA2:测试和验证)。使用平均 Jaccard 指数(AJI)、体积交集比(AVI)、体积误差(AVE)和 Hausdorff 距离(AHD),评估了针对 EA1 参考的注意力 U 网(A-U-net)模型的准确性,共评估了四种训练情况:完整训练、两次半分割和单鼠子集。通过测试-再测试对的胫骨体积的受试者内变异系数(%wCV)评估了计算机与专家分割的重复性。在全数据集和半数据集上训练的 A-U-net 模型在测试集上达到了相似的平均准确性(与 EA1 注释相比):AJI = 83-84%,AVI = 89-90%,AVE = 2-3%,AHD = 0.5-0.7mm,优于 EA2 的准确性:AJI = 81%,AVI = 83%,AVE = 14%,AHD = 0.3mm。A-U-net 模型的可重复性 wCV[95%CI]:3[2,5]%明显优于专家注释员 EA1:5[4,9]%和 EA2:8[6,13]%。所开发的深度学习模型能够有效地对鼠类骨髓进行自动分割,其准确性可与人类注释员相媲美,并且可大大提高重复性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cd8/10037585/9d540c7925a1/tomography-09-00048-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验