Suppr超能文献

使用深度学习在MRI、CT和X线摄影中测量椎体畸形

Vertebral Deformity Measurements at MRI, CT, and Radiography Using Deep Learning.

作者信息

Suri Abhinav, Jones Brandon C, Ng Grace, Anabaraonye Nancy, Beyrer Patrick, Domi Albi, Choi Grace, Tang Sisi, Terry Ashley, Leichner Thomas, Fathali Iman, Bastin Nikita, Chesnais Helene, Taratuta Elena, Kneeland Bruce J, Rajapakse Chamith S

机构信息

Departments of Radiology and Orthopedics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104.

出版信息

Radiol Artif Intell. 2021 Nov 10;4(1):e210015. doi: 10.1148/ryai.2021210015. eCollection 2022 Jan.

Abstract

PURPOSE

To construct and evaluate the efficacy of a deep learning system to rapidly and automatically locate six vertebral landmarks, which are used to measure vertebral body heights, and to output spine angle measurements (lumbar lordosis angles [LLAs]) across multiple modalities.

MATERIALS AND METHODS

In this retrospective study, MR ( = 1123), CT ( = 137), and radiographic ( = 484) images were used from a wide variety of patient populations, ages, disease stages, bone densities, and interventions ( = 1744 total patients, 64 years ± 8, 76.8% women; images acquired 2005-2020). Trained annotators assessed images and generated data necessary for deformity analysis and for model development. A neural network model was then trained to output vertebral body landmarks for vertebral height measurement. The network was trained and validated on 898 MR, 110 CT, and 387 radiographic images and was then evaluated or tested on the remaining images for measuring deformities and LLAs. The Pearson correlation coefficient was used in reporting LLA measurements.

RESULTS

On the holdout testing dataset (225 MR, 27 CT, and 97 radiographic images), the network was able to measure vertebral heights (mean height percentage of error ± 1 standard deviation: MR images, 1.5% ± 0.3; CT scans, 1.9% ± 0.2; radiographs, 1.7% ± 0.4) and produce other measures such as the LLA (mean absolute error: MR images, 2.90°; CT scans, 2.26°; radiographs, 3.60°) in less than 1.7 seconds across MR, CT, and radiographic imaging studies.

CONCLUSION

The developed network was able to rapidly measure morphometric quantities in vertebral bodies and output LLAs across multiple modalities. Computer Aided Diagnosis (CAD), MRI, CT, Spine, Demineralization-Bone, Feature Detection © RSNA, 2021.

摘要

目的

构建并评估一个深度学习系统的效能,该系统用于快速自动定位六个椎体标志点,这些标志点用于测量椎体高度,并能跨多种模态输出脊柱角度测量值(腰椎前凸角[LLA])。

材料与方法

在这项回顾性研究中,使用了来自广泛患者群体、不同年龄、疾病阶段、骨密度和干预措施的磁共振成像(MR,n = 1123)、计算机断层扫描(CT,n = 137)和X线摄影(n = 484)图像(共1744例患者,年龄64岁±8岁,女性占76.8%;图像采集时间为2005 - 2020年)。经过培训的标注人员对图像进行评估,并生成畸形分析和模型开发所需的数据。然后训练一个神经网络模型,以输出用于椎体高度测量的椎体标志点。该网络在898例MR、110例CT和387例X线摄影图像上进行训练和验证,然后在其余图像上进行评估或测试,以测量畸形和LLA。在报告LLA测量值时使用Pearson相关系数。

结果

在留存测试数据集(225例MR、27例CT和97例X线摄影图像)上,该网络能够在不到1.7秒的时间内跨MR、CT和X线摄影成像研究测量椎体高度(平均高度误差百分比±1标准差:MR图像为1.5%±0.3;CT扫描为1.9%±0.2;X线片为1.7%±0.4),并产生其他测量值,如LLA(平均绝对误差:MR图像为2.90°;CT扫描为2.26°;X线片为3.60°)。

结论

所开发的网络能够快速测量椎体的形态学量,并跨多种模态输出LLA。计算机辅助诊断(CAD)、磁共振成像(MRI)、计算机断层扫描(CT)、脊柱、骨质脱矿 - 骨、特征检测 © RSNA,2021。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6daa/8823454/ecb9a59d8214/ryai.2021210015.VA.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验