Bergey Meredith, Chiri Giuseppina, Freeman Nikki L B, Mackie Thomas I
Department of Sociology and Criminology, Villanova University, Villanova, Pennsylvania, USA.
RTI International, Center for the Health of Populations, Waltham, Massachusetts, USA.
Sociol Health Illn. 2022 Mar;44(3):604-623. doi: 10.1111/1467-9566.13443. Epub 2022 Feb 11.
While the effects of social stratification by gender, race, class, and ethnicity on health inequalities are well-documented, our understanding of the intersecting consequences of these social dimensions on diagnosis remains limited. This is particularly the case in studies of mental health, where "paradoxical" patterns of stratification have been identified. Using a Bayesian multi-level random-effects Poisson model and a nationally representative random sample of 138,009 households from the National Survey of Children's Health, this study updates and extends the literature on mental health inequalities through an intersectional investigation of one of the most commonly diagnosed psychiatric conditions of childhood/adolescence: attention-deficit hyperactivity disorder (ADHD). Findings indicate that gender, race, class, and ethnicity combine in mutually constitutive ways to explain between-group variation in ADHD diagnosis. Observed effects underscore the importance and feasibility of an intersectional, multi-level modelling approach and data mapping technique to advance our understanding of social subgroups more/less likely to be diagnosed with mental health conditions.
虽然性别、种族、阶级和族裔方面的社会分层对健康不平等的影响已有充分记录,但我们对这些社会维度在诊断方面的交叉后果的理解仍然有限。在心理健康研究中尤其如此,在这些研究中已经发现了 “矛盾的” 分层模式。本研究使用贝叶斯多层次随机效应泊松模型以及来自全国儿童健康调查的138,009户家庭的具有全国代表性的随机样本,通过对儿童期/青少年期最常见的精神疾病之一:注意力缺陷多动障碍(ADHD)进行交叉调查,更新并扩展了关于心理健康不平等的文献。研究结果表明,性别、种族、阶级和族裔以相互构成的方式结合起来,解释了ADHD诊断中的组间差异。观察到的结果强调了交叉性、多层次建模方法和数据映射技术对于推进我们对更有可能或不太可能被诊断为患有精神健康疾病的社会亚群体的理解的重要性和可行性。