Suppr超能文献

非传染性疾病种族健康不平等分析中的贝叶斯推断:一项系统综述

Bayesian inference in racial health inequity analyses for noncommunicable diseases: a systematic review.

作者信息

Espinosa Oscar, Bejarano Valeria, Mejía Andrea, Castro Héctor, Paternina-Caicedo Angel

机构信息

Economic Models and Quantitative Methods Research Group, Centro de Investigaciones para el Desarrollo, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.

Health-R LLC, Arlington, VA, USA.

出版信息

Syst Rev. 2025 Jul 10;14(1):145. doi: 10.1186/s13643-025-02898-w.

Abstract

BACKGROUND

Health inequalities are differences in health status or in the distribution of resources and opportunities between different population groups. Bayesian models are well-suited to address the special features and uncertainties in inequality analyses, making them useful for informing policymaking. This research reviewed the use of Bayesian models in racial health equity studies focused on non-communicable diseases.

METHODOLOGY

A systematic review was conducted to assess the applications and utility of Bayesian inference in racial health equity studies for non-communicable diseases (PROSPERO Registry No. CRD42024568708). A total of 2274 articles were identified through electronic databases, and 46 studies met inclusion criteria. All but three articles were from high-income countries, and all were published between 2008 and 2024. We summarized the information qualitatively, and each document included was assessed using the Bennett-Manuel checklist tool.

FINDINGS

Studies on cancer and cardiovascular diseases were the most frequent. The most frequently used models were Poisson, spatial, and logistic regressions, with Markov-chain Monte Carlo and Integrated nested Laplace approximations being the dominant sampling strategies. The studies found that Black individuals, followed by those of Hispanic ethnicity, are the racial/ethnic groups most affected by health inequities. Data on other racial groups (e.g., Indigenous populations, people of Asian heritage) was insufficient for drawing definitive conclusions. The main factor contributing to these disparities lies within the health system, particularly in terms of access and quality, which can be understood in the context of each disease.

INTERPRETATION

The integration of Bayesian modeling into health equity studies holds promise for developing methodologies that lead to insights and foster meaningful change.

摘要

背景

健康不平等是指不同人群在健康状况或资源与机会分配方面的差异。贝叶斯模型非常适合处理不平等分析中的特殊特征和不确定性,有助于为政策制定提供信息。本研究回顾了贝叶斯模型在关注非传染性疾病的种族健康公平研究中的应用。

方法

进行了一项系统综述,以评估贝叶斯推理在非传染性疾病种族健康公平研究中的应用和效用(PROSPERO注册号:CRD42024568708)。通过电子数据库共检索到2274篇文章,46项研究符合纳入标准。除3篇文章外,其余均来自高收入国家,所有文章均发表于2008年至2024年之间。我们对信息进行了定性总结,并使用贝内特 - 曼努埃尔清单工具对每篇纳入的文献进行评估。

结果

关于癌症和心血管疾病的研究最为常见。最常用的模型是泊松回归、空间回归和逻辑回归,马尔可夫链蒙特卡罗和集成嵌套拉普拉斯近似是主要的抽样策略。研究发现,黑人个体,其次是西班牙裔个体,是受健康不平等影响最大的种族/族裔群体。关于其他种族群体(如原住民、亚裔血统人群)的数据不足以得出明确结论。造成这些差异的主要因素在于卫生系统,特别是在可及性和质量方面,这在每种疾病的背景下都可以理解。

解读

将贝叶斯建模纳入健康公平研究有望开发出能带来深刻见解并促进有意义变革的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验