Suppr超能文献

基于卷积神经网络的重建加速前列腺 T 加权磁共振成像:回顾性和前瞻性研究。

Convolutional neural network-based reconstruction for acceleration of prostate T weighted MR imaging: a retro- and prospective study.

机构信息

AIRS Medical, Seoul, Republic of Korea.

Department of Radiology, St.Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Gyeonggi-do, Republic of Korea.

出版信息

Br J Radiol. 2022 May 1;95(1133):20211378. doi: 10.1259/bjr.20211378. Epub 2022 Feb 11.

Abstract

OBJECTIVE

The aim of this study was to develop a deep neural network (DNN)-based parallel imaging reconstruction for highly accelerated 2D turbo spin echo (TSE) data in prostate MRI without quality degradation compared to conventional scans.

METHODS

155 participant data were acquired for training and testing. Two DNN models were generated according to the number of acquisitions (NAQ) of input images: DNN-N1 for NAQ = 1 and DNN-N2 for NAQ = 2. In the test data, DNN and TSE images were compared by quantitative error metrics. The visual appropriateness of DNN reconstructions on accelerated scans (DNN-N1 and DNN-N2) and conventional scans (TSE-Conv) was assessed for nine parameters by two radiologists. The lesion detection was evaluated at DNNs and TES-Conv by prostate imaging-reporting and data system.

RESULTS

The scan time was reduced by 71% at NAQ = 1, and 42% at NAQ = 2. Quantitative evaluation demonstrated the better error metrics of DNN images (29-43% lower NRMSE, 4-13% higher structure similarity index, and 2.8-4.8 dB higher peak signal-to-noise ratio; < 0.001) than TSE images. In the assessment of the visual appropriateness, both radiologists evaluated that DNN-N2 showed better or comparable performance in all parameters compared to TSE-Conv. In the lesion detection, DNN images showed almost perfect agreement (κ > 0.9) scores with TSE-Conv.

CONCLUSIONS

DNN-based reconstruction in highly accelerated prostate TSE imaging showed comparable quality to conventional TSE.

ADVANCES IN KNOWLEDGE

Our framework reduces the scan time by 42% of conventional prostate TSE imaging without sequence modification, revealing great potential for clinical application.

摘要

目的

本研究旨在开发一种基于深度神经网络(DNN)的并行成像重建方法,用于在不降低质量的情况下对前列腺 MRI 中高度加速的 2D 涡轮自旋回波(TSE)数据进行重建,与常规扫描相比。

方法

共采集了 155 名参与者的数据用于训练和测试。根据输入图像的采集数量(NAQ)生成了两个 DNN 模型:DNN-N1 用于 NAQ=1,DNN-N2 用于 NAQ=2。在测试数据中,通过定量误差指标比较 DNN 和 TSE 图像。两位放射科医生对加速扫描(DNN-N1 和 DNN-N2)和常规扫描(TSE-Conv)的 DNN 重建的视觉适宜性进行了九项参数评估。通过前列腺成像报告和数据系统(PI-RADS)对 DNN 和 TES-Conv 的病变检测进行了评估。

结果

NAQ=1 时扫描时间减少了 71%,NAQ=2 时扫描时间减少了 42%。定量评估表明,DNN 图像的误差指标更好(NRMSE 降低 29-43%,结构相似性指数提高 4-13%,峰值信噪比提高 2.8-4.8dB;<0.001),优于 TSE 图像。在视觉适宜性评估中,两位放射科医生均评估 DNN-N2 在所有参数上的表现均优于或与 TSE-Conv 相当。在病变检测方面,DNN 图像与 TSE-Conv 具有几乎完美的一致性(κ>0.9)评分。

结论

基于 DNN 的高度加速前列腺 TSE 成像重建方法与常规 TSE 相比具有相当的质量。

知识进展

我们的框架在不修改序列的情况下将常规前列腺 TSE 成像的扫描时间减少了 42%,这为临床应用提供了巨大的潜力。

相似文献

引用本文的文献

4
Recent trends in AI applications for pelvic MRI: a comprehensive review.人工智能在盆腔 MRI 中的应用研究进展:综述
Radiol Med. 2024 Sep;129(9):1275-1287. doi: 10.1007/s11547-024-01861-4. Epub 2024 Aug 3.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验