Suppr超能文献

机器学习赋能电流体动力处理。

Machine learning to empower electrohydrodynamic processing.

机构信息

Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

出版信息

Mater Sci Eng C Mater Biol Appl. 2022 Jan;132:112553. doi: 10.1016/j.msec.2021.112553. Epub 2021 Nov 16.

Abstract

Electrohydrodynamic (EHD) processes are promising healthcare fabrication technologies, as evidenced by the number of commercialised and food-and-drug administration (FDA)-approved products produced by these processes. Their ability to produce both rapidly and precisely nano-sized products provides them with a unique set of qualities that cannot be matched by other fabrication technologies. Consequently, this has stimulated the development of EHD processing to tackle other healthcare challenges. However, as with most technologies, time and resources will be needed to realise fully the potential EHD processes can offer. To address this bottleneck, researchers are adopting machine learning (ML), a subset of artificial intelligence, into their workflow. ML has already made ground-breaking advancements in the healthcare sector, and it is anticipated to do the same in the materials domain. Presently, the application of ML in fabrication technologies lags behind other sectors. To that end, this review showcases the progress made by ML for EHD workflows, demonstrating how the latter can benefit greatly from the former. In addition, we provide an introduction to the ML pipeline, to help encourage the use of ML for other EHD researchers. As discussed, the merger of ML with EHD has the potential to expedite novel discoveries and to automate the EHD workflow.

摘要

电动力学(EHD)工艺是很有前途的医疗保健制造技术,这一点可以从这些工艺生产的商业化和食品药品监督管理局(FDA)批准的产品数量得到证明。它们能够快速而精确地生产纳米级产品,这使它们具有其他制造技术无法比拟的独特品质。因此,这刺激了 EHD 加工技术的发展,以解决其他医疗保健挑战。然而,与大多数技术一样,需要时间和资源才能充分实现 EHD 工艺所能提供的潜力。为了解决这一瓶颈,研究人员正在将机器学习(ML),人工智能的一个分支,应用到他们的工作流程中。机器学习在医疗保健领域已经取得了突破性的进展,预计在材料领域也将如此。目前,机器学习在制造技术中的应用落后于其他领域。为此,本文展示了机器学习在 EHD 工作流程中的进展,展示了后者如何从前者中受益匪浅。此外,我们还介绍了机器学习的管道,以帮助鼓励其他 EHD 研究人员使用机器学习。正如讨论的那样,机器学习与 EHD 的融合有可能加速新发现,并使 EHD 工作流程自动化。

相似文献

1
Machine learning to empower electrohydrodynamic processing.
Mater Sci Eng C Mater Biol Appl. 2022 Jan;132:112553. doi: 10.1016/j.msec.2021.112553. Epub 2021 Nov 16.
2
Designs and applications of electrohydrodynamic 3D printing.
Int J Bioprint. 2018 Dec 26;5(1):172. doi: 10.18063/ijb.v5i1.172. eCollection 2019.
4
Mechanisms and modeling of electrohydrodynamic phenomena.
Int J Bioprint. 2018 Dec 28;5(1):166. doi: 10.18063/ijb.v5i1.166. eCollection 2019.
5
Disrupting 3D printing of medicines with machine learning.
Trends Pharmacol Sci. 2021 Sep;42(9):745-757. doi: 10.1016/j.tips.2021.06.002. Epub 2021 Jul 5.
6
High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices.
Micromachines (Basel). 2022 Apr 18;13(4):642. doi: 10.3390/mi13040642.
7
On the Resolution Limit of Electrohydrodynamic Redox 3D Printing.
Small. 2024 Nov;20(46):e2402067. doi: 10.1002/smll.202402067. Epub 2024 Aug 2.
8
Machine learning predicts 3D printing performance of over 900 drug delivery systems.
J Control Release. 2021 Sep 10;337:530-545. doi: 10.1016/j.jconrel.2021.07.046. Epub 2021 Jul 30.
10
A Review on Electrohydrodynamic (EHD) Pump.
Micromachines (Basel). 2023 Jan 26;14(2):321. doi: 10.3390/mi14020321.

引用本文的文献

1
CNN-Optimized Electrospun TPE/PVDF Nanofiber Membranes for Enhanced Temperature and Pressure Sensing.
Polymers (Basel). 2024 Aug 27;16(17):2423. doi: 10.3390/polym16172423.
2
The Dawn of a New Pharmaceutical Epoch: Can AI and Robotics Reshape Drug Formulation?
Adv Healthc Mater. 2024 Nov;13(29):e2401312. doi: 10.1002/adhm.202401312. Epub 2024 Aug 18.
4
Electroactive Polymers for On-Demand Drug Release.
Adv Healthc Mater. 2024 Jan;13(3):e2301759. doi: 10.1002/adhm.202301759. Epub 2023 Nov 12.
5
Analysis and Prediction of Electrospun Nanofiber Diameter Based on Artificial Neural Network.
Polymers (Basel). 2023 Jun 25;15(13):2813. doi: 10.3390/polym15132813.
6
Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development.
Pharmaceutics. 2021 Dec 17;13(12):2187. doi: 10.3390/pharmaceutics13122187.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验