Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.
Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
Nat Commun. 2022 Feb 11;13(1):829. doi: 10.1038/s41467-022-28206-x.
Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis.
合成生物学的进步使得可以在单体精度上对合成化学进行基因编码,从而能够合成具有可调性质的可编程蛋白质。由于细菌菌毛能够自组装成机械坚固的纤维,因此它们是开发工程蛋白材料的有吸引力的生物材料。然而,大多数生物材料缺乏电子功能,并且不知道假定的导电蛋白的原子结构。在这里,我们在通过基因重编程的大肠杆菌菌株产生的菌毛中设计了高导电性。将色氨酸掺入菌毛中可使单个纤维的电导率增加> 80 倍。与无序菌毛网络相比,通过计算指导将菌毛有序排列成纳米结构可使电导率提高 5 倍。通过掺入非标准氨基酸炔丙氧基苯丙氨酸,菌毛与金纳米颗粒的特异性结合可使纤维电导率增加约 170 倍。这项工作证明了高度导电的蛋白质纳米线的序列定义生产以及具有遗传可编程电子功能的混合有机-无机生物材料,这些功能在自然界或通过基于化学的合成是无法获得的。