文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

眼纳米医学。

Ocular Nanomedicine.

机构信息

Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China.

Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.

出版信息

Adv Sci (Weinh). 2022 May;9(15):e2003699. doi: 10.1002/advs.202003699. Epub 2022 Feb 12.


DOI:10.1002/advs.202003699
PMID:35150092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9130902/
Abstract

Intrinsic shortcomings associated with conventional therapeutic strategies often compromise treatment efficacy in clinical ophthalmology, prompting the rapid development of versatile alternatives for satisfactory diagnostics and therapeutics. Given advances in material science, nanochemistry, and nanobiotechnology, a broad spectrum of functional nanosystems has been explored to satisfy the extensive requirements of ophthalmologic applications. In the present review, the recent progress in nanosystems, both conventional and emerging nanomaterials in ophthalmology from state-of-the-art studies, are comprehensively examined and the role of their fundamental physicochemical properties in bioavailability, tissue penetration, biodistribution, and elimination after interacting with the ophthalmologic microenvironment emphasized. Furthermore, along with the development of surface engineering of nanomaterials, emerging theranostic methodologies are promoted as potential alternatives for multipurpose ocular applications, such as emerging biomimetic ophthalmology (e.g., smart electrochemical eye), thus provoking a holistic review of "ocular nanomedicine." By affording insight into challenges encountered by ocular nanomedicine and further highlighting the direction of future studies, this review provides an incentive for enriching ocular nanomedicine-based fundamental research and future clinical translation.

摘要

在临床眼科中,传统治疗策略的固有缺陷往往会影响治疗效果,促使人们迅速开发出各种替代方法来满足诊断和治疗的需求。鉴于材料科学、纳米化学和纳米生物技术的进步,已经探索了广泛的功能纳米系统,以满足眼科应用的广泛需求。在本综述中,从最新研究中全面检查了眼科中常规和新兴纳米材料的纳米系统的最新进展,并强调了它们的基本物理化学性质在与眼科微环境相互作用后生物利用度、组织穿透性、生物分布和消除方面的作用。此外,随着纳米材料表面工程的发展,新兴的治疗方法被推广为多用途眼部应用的潜在替代方法,例如新兴仿生眼科(例如,智能电化学眼),从而全面回顾了“眼部纳米医学”。通过深入了解眼科纳米医学所面临的挑战,并进一步强调未来研究的方向,本综述为丰富基于眼部纳米医学的基础研究和未来的临床转化提供了动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/6bed9362ae1f/ADVS-9-2003699-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/197aaa44094d/ADVS-9-2003699-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/66e08c4e5a91/ADVS-9-2003699-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/be979c8b37d9/ADVS-9-2003699-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/5d5499ba68a7/ADVS-9-2003699-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/159011bdd9f2/ADVS-9-2003699-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/9f5fccf18d99/ADVS-9-2003699-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/67ffa0c137ab/ADVS-9-2003699-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/8d0abce38cb0/ADVS-9-2003699-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/cfe5de0881cc/ADVS-9-2003699-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/a3f55f8731a3/ADVS-9-2003699-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/3e42812a826f/ADVS-9-2003699-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/e0b87fb7162c/ADVS-9-2003699-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/f6973ad57931/ADVS-9-2003699-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/0ac4aa0388ea/ADVS-9-2003699-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/472d946e1611/ADVS-9-2003699-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/808799d563cb/ADVS-9-2003699-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/fa35fcc6c335/ADVS-9-2003699-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/fb88e086585f/ADVS-9-2003699-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/2b7bd714b4be/ADVS-9-2003699-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/66dbfcb5c2b7/ADVS-9-2003699-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/6bed9362ae1f/ADVS-9-2003699-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/197aaa44094d/ADVS-9-2003699-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/66e08c4e5a91/ADVS-9-2003699-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/be979c8b37d9/ADVS-9-2003699-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/5d5499ba68a7/ADVS-9-2003699-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/159011bdd9f2/ADVS-9-2003699-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/9f5fccf18d99/ADVS-9-2003699-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/67ffa0c137ab/ADVS-9-2003699-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/8d0abce38cb0/ADVS-9-2003699-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/cfe5de0881cc/ADVS-9-2003699-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/a3f55f8731a3/ADVS-9-2003699-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/3e42812a826f/ADVS-9-2003699-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/e0b87fb7162c/ADVS-9-2003699-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/f6973ad57931/ADVS-9-2003699-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/0ac4aa0388ea/ADVS-9-2003699-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/472d946e1611/ADVS-9-2003699-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/808799d563cb/ADVS-9-2003699-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/fa35fcc6c335/ADVS-9-2003699-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/fb88e086585f/ADVS-9-2003699-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/2b7bd714b4be/ADVS-9-2003699-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/66dbfcb5c2b7/ADVS-9-2003699-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bacf/9130902/6bed9362ae1f/ADVS-9-2003699-g007.jpg

相似文献

[1]
Ocular Nanomedicine.

Adv Sci (Weinh). 2022-5

[2]
Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives.

Biomaterials. 2021-3

[3]
Chemoreactive nanomedicine.

J Mater Chem B. 2020-8-21

[4]
Nanocatalytic Medicine.

Adv Mater. 2019-7-22

[5]
Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections.

Adv Mater. 2023-11

[6]
Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering.

J Nanobiotechnology. 2021-1-19

[7]
Recent Advances in Managing Atherosclerosis via Nanomedicine.

Small. 2017-12-14

[8]
Recent Advances of Membrane-Cloaked Nanoplatforms for Biomedical Applications.

Bioconjug Chem. 2018-3-20

[9]
Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies.

Biomacromolecules. 2018-10-5

[10]
Ultrasound nanomedicine and materdicine.

J Mater Chem B. 2023-6-21

引用本文的文献

[1]
Roles of biomaterials in modulating the innate immune response in ocular therapy.

Front Drug Deliv. 2023-2-15

[2]
Nanomedicine-Based Ophthalmic Drug Delivery Systems for the Treatment of Ocular Diseases.

Int J Nanomedicine. 2025-7-21

[3]
Inorganic nanomaterials as promising therapeutic agents for ocular neovascularization: Progress and perspectives.

Mater Today Bio. 2025-7-4

[4]
Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances.

Signal Transduct Target Ther. 2025-6-11

[5]
Nanomedicine-Based Treatments for Rare and Aggressive Ocular Cancers: Advances in Drug Delivery.

Curr Treat Options Oncol. 2025-5-22

[6]
Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases.

Discov Nano. 2025-5-3

[7]
Frontier applications of retinal nanomedicine: progress, challenges and perspectives.

J Nanobiotechnology. 2025-2-25

[8]
Recent advances in photothermal nanomaterials for ophthalmic applications.

Beilstein J Nanotechnol. 2025-2-17

[9]
Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases.

Adv Sci (Weinh). 2024-8

[10]
Metabolic Regulation of Endothelial Cells: A New Era for Treating Wet Age-Related Macular Degeneration.

Int J Mol Sci. 2024-5-29

本文引用的文献

[1]
Tailoring therapeutic properties of silver nanoparticles for effective bacterial keratitis treatment.

Colloids Surf B Biointerfaces. 2021-9

[2]
Horizontal transmission of HTLV-1 causing uveitis.

Lancet Infect Dis. 2021-4

[3]
A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems.

Nat Commun. 2021-3-19

[4]
Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute.

Biomaterials. 2021-4

[5]
Bioinspired protein corona strategy enhanced biocompatibility of Ag-Hybrid hollow Au nanoshells for surface-enhanced Raman scattering imaging and on-demand activation tumor-phototherapy.

Biomaterials. 2021-4

[6]
Dasatinib loaded nanostructured lipid carriers for effective treatment of corneal neovascularization.

Biomater Sci. 2021-4-7

[7]
Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration.

Small. 2021-3

[8]
Liposomal drug delivery system for anti-inflammatory treatment after cataract surgery: a phase I/II clinical trial.

Drug Deliv Transl Res. 2022-1

[9]
Uveitis for the non-ophthalmologist.

BMJ. 2021-2-3

[10]
Improved Treatment Options for Glaucoma with Brimonidine-Loaded Lipid DNA Nanoparticles.

ACS Appl Mater Interfaces. 2021-3-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索