Suppr超能文献

利用机器学习方法从美国食品和药物管理局批准的药物中筛选具有新型结构的抗菌化合物。

Screening of antibacterial compounds with novel structure from the FDA approved drugs using machine learning methods.

机构信息

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.

Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, Guangdong, China.

出版信息

Aging (Albany NY). 2022 Feb 12;14(3):1448-1472. doi: 10.18632/aging.203887.

Abstract

Bacterial infection is one of the most important factors affecting the human life span. Elderly people are more harmed by bacterial infections due to their deficits in immunity. Because of the lack of new antibiotics in recent years, bacterial resistance has increasingly become a serious problem globally. In this study, an antibacterial compound predictor was constructed using the support vector machines and random forest methods and the data of the active and inactive antibacterial compounds from the ChEMBL database. The results showed that both models have excellent prediction performance (mean accuracy >0.9 and mean AUC >0.9 for the two models). We used the predictor to screen potential antibacterial compounds from FDA-approved drugs in the DrugBank database. The screening results showed that 1087 small-molecule drugs have potential antibacterial activity and 154 of them are FDA-approved antibacterial drugs, which accounts for 76.2% of the approved antibacterial drugs collected in this study. Through molecular fingerprint similarity analysis and common substructure analysis, we screened 8 predicted antibacterial small-molecule compounds with novel structures compared with known antibacterial drugs, and 5 of them are widely used in the treatment of various tumors. This study provides a new insight for predicting antibacterial compounds by using approved drugs, the predicted compounds might be used to treat bacterial infections and extend lifespan.

摘要

细菌感染是影响人类寿命的最重要因素之一。老年人由于免疫力下降,更容易受到细菌感染的伤害。由于近年来缺乏新的抗生素,细菌耐药性日益成为一个严重的全球性问题。本研究使用支持向量机和随机森林方法,结合 ChEMBL 数据库中活性和非活性抗菌化合物的数据,构建了一个抗菌化合物预测器。结果表明,两种模型均具有出色的预测性能(两种模型的平均准确率>0.9,平均 AUC>0.9)。我们使用该预测器从 DrugBank 数据库中的 FDA 批准药物中筛选潜在的抗菌化合物。筛选结果表明,有 1087 种小分子药物具有潜在的抗菌活性,其中 154 种是 FDA 批准的抗菌药物,占本研究中收集的批准抗菌药物的 76.2%。通过分子指纹相似性分析和共同亚结构分析,我们筛选出 8 种与已知抗菌药物相比具有新颖结构的预测抗菌小分子化合物,其中 5 种广泛用于治疗各种肿瘤。这项研究为利用已批准药物预测抗菌化合物提供了新的思路,这些预测化合物可能用于治疗细菌感染和延长寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11e1/8876917/0d88ae3fb71b/aging-14-203887-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验