Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
Interdisciplinary Cluster for Cutting Edge Research (ICCER), Institute for Fiber Engineering (IFES), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
ACS Appl Mater Interfaces. 2022 Feb 23;14(7):9126-9137. doi: 10.1021/acsami.1c23176. Epub 2022 Feb 14.
Hydrogels that combine the integrated attributes of being adhesive, self-healable, deformable, and conductive show great promise for next-generation soft robotic/energy/electronic applications. Herein, we reported a dual-network polyacrylamide (PAAM)/poly(acrylic acid) (PAA)/graphene (GR)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (MAGP) conductive hydrogel composed of dual-cross-linked PAAM and PAA as well as PEDOT:PSS and GR as a conducting component that combines these features. A wearable strain sensor is fabricated by sandwiching the MAGP hydrogels between two dielectric carbon nanotubes (CNTs)/poly(dimethylsiloxane) (PDMS) layers, which can be utilized to monitor delicate and vigorous human motion. In addition, the hydrogel-based sensor can act as a deformable triboelectric nanogenerator (D-TENG) for harvesting mechanical energy. The D-TENG demonstrates a peak output voltage and current of 141 V and 0.8 μA, respectively. The D-TENG could easily light 52 yellow-light-emitting diodes (LEDs) simultaneously and demonstrated the capability to power small electronics, such as a hygrometer thermometer. This work provides a potential approach for the development of deformable energy sources and self-powered strain sensors.
水凝胶兼具粘性、自修复、可变形和导电性等综合特性,有望应用于下一代软体机器人/能源/电子领域。在此,我们报道了一种由双网络聚丙烯酰胺(PAAM)/聚丙烯酸(PAA)/石墨烯(GR)/聚(3,4-乙二氧基噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)(MAGP)组成的导电水凝胶,其中包括双交联的 PAAM 和 PAA 以及作为导电组件的 PEDOT:PSS 和 GR。将 MAGP 水凝胶夹在两个介电碳纳米管(CNT)/聚二甲基硅氧烷(PDMS)层之间,可制备出一种可穿戴应变传感器,用于监测精细和剧烈的人体运动。此外,基于水凝胶的传感器可用作可变形摩擦电纳米发电机(D-TENG)来收集机械能。D-TENG 的输出电压和电流峰值分别为 141 V 和 0.8 μA。D-TENG 可以轻松点亮 52 个黄色发光二极管(LED),同时还可以为湿度计温度计等小型电子设备供电。这项工作为可变形能源和自供电应变传感器的发展提供了一种潜在的方法。