Suppr超能文献

基于光电容积脉搏波图的最重要特征的 XGBoost 回归分析,用于评估血管老化。

XGBoost Regression of the Most Significant Photoplethysmogram Features for Assessing Vascular Aging.

出版信息

IEEE J Biomed Health Inform. 2022 Jul;26(7):3354-3361. doi: 10.1109/JBHI.2022.3151091. Epub 2022 Jul 1.

Abstract

The purpose of this study was to confirm the potential of XGBoost as a vascular aging assessment model based on the photoplethysmogram (PPG) features suggested in previous studies, and to explore the key PPG features for vascular aging assessment through an explainable artificial intelligence method. The PPG waveforms obtained from 752 volunteers aged 19-87 years were analyzed and a total of 78 features were derived that were proposed in previous studies. Age was estimated through an XGBoost regression model, and estimation error was calculated in terms of mean absolute error and root-mean-squared error. To evaluate feature importance, gain, coverage, weight, and SHAP value was calculated. The vascular aging assessment model developed using XGBoost has 8.1 years of mean-absolute error and 9.9 years of root-mean-squared error, a correlation coefficient of 0.63 with actual age, and a coefficient of determination of 0.39. Feature importance analysis using the SHAP value confirmed that features, such as systolic and diastolic peak amplitude, risetime, skewness, and pulse area, play a key role in vascular aging assessment. The XGBoost regression model showed an equal level of performance to the existing PPG-based vascular aging assessment models. Moreover, the result of feature importance analysis using explainable artificial intelligence verified that the features proposed in previous vascular aging assessment studies, such as reflective index and risetime, were more important in vascular aging assessment than other PPG features.

摘要

本研究旨在基于先前研究中提出的光体积描记图(PPG)特征,确认 XGBoost 作为血管老化评估模型的潜力,并通过可解释的人工智能方法探索用于血管老化评估的关键 PPG 特征。分析了 752 名年龄在 19-87 岁的志愿者的 PPG 波形,共提取了 78 个先前研究中提出的特征。通过 XGBoost 回归模型估计年龄,并以平均绝对误差和均方根误差来计算估计误差。为了评估特征的重要性,计算了增益、覆盖率、权重和 SHAP 值。使用 XGBoost 开发的血管老化评估模型的平均绝对误差为 8.1 年,均方根误差为 9.9 年,与实际年龄的相关系数为 0.63,决定系数为 0.39。使用 SHAP 值的特征重要性分析证实,收缩期和舒张期峰值幅度、上升时间、偏度和脉搏面积等特征在血管老化评估中起着关键作用。XGBoost 回归模型的性能与现有的基于 PPG 的血管老化评估模型相当。此外,使用可解释人工智能的特征重要性分析结果验证了先前血管老化评估研究中提出的特征,如反射指数和上升时间,在血管老化评估中比其他 PPG 特征更为重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验