Bekeschus Sander, Ispirjan Mikael, Freund Eric, Kinnen Frederik, Moritz Juliane, Saadati Fariba, Eckroth Jacqueline, Singer Debora, Stope Matthias B, Wende Kristian, Ritter Christoph A, Schroeder Henry W S, Marx Sascha
ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
Department of Neurosurgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
Cancers (Basel). 2022 Feb 5;14(3):813. doi: 10.3390/cancers14030813.
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Therapeutic options for glioblastoma are maximal surgical resection, chemotherapy, and radiotherapy. Therapy resistance and tumor recurrence demand, however, new strategies. Several experimental studies have suggested gas plasma technology, a partially ionized gas that generates a potent mixture of reactive oxygen species (ROS), as a future complement to the existing treatment arsenal. However, aspects such as immunomodulation, inflammatory consequences, and feasibility studies using GBM tissue have not been addressed so far. In vitro, gas plasma generated ROS that oxidized cells and led to a treatment time-dependent metabolic activity decline and G2 cell cycle arrest. In addition, peripheral blood-derived monocytes were co-cultured with glioblastoma cells, and immunomodulatory surface expression markers and cytokine release were screened. Gas plasma treatment of either cell type, for instance, decreased the expression of the M2-macrophage marker CD163 and the tolerogenic molecule SIGLEC1 (CD169). In patient-derived GBM tissue samples exposed to the plasma jet kINPen ex vivo, apoptosis was significantly increased. Quantitative chemokine/cytokine release screening revealed gas plasma exposure to significantly decrease 5 out of 11 tested chemokines and cytokines, namely IL-6, TGF-β, sTREM-2, b-NGF, and TNF-α involved in GBM apoptosis and immunomodulation. In summary, the immuno-modulatory and proapoptotic action shown in this study might be an important step forward to first clinical observational studies on the future discovery of gas plasma technology's potential in neurosurgery and neuro-oncology especially in putative adjuvant or combinatory GBM treatment settings.
多形性胶质母细胞瘤(GBM)是成人最常见的原发性恶性脑肿瘤。胶质母细胞瘤的治疗选择包括最大限度的手术切除、化疗和放疗。然而,治疗耐药性和肿瘤复发需要新的策略。几项实验研究表明,气体等离子体技术作为一种部分电离的气体,能产生强效的活性氧(ROS)混合物,有望成为现有治疗手段的补充。然而,迄今为止,尚未涉及免疫调节、炎症后果以及使用GBM组织进行可行性研究等方面。在体外,气体等离子体产生的ROS可氧化细胞,导致治疗时间依赖性的代谢活性下降和G2期细胞周期停滞。此外,将外周血来源的单核细胞与胶质母细胞瘤细胞共培养,并筛选免疫调节性表面表达标志物和细胞因子释放情况。例如,对任一种细胞类型进行气体等离子体处理均可降低M2巨噬细胞标志物CD163和耐受性分子SIGLEC1(CD169)的表达。在体外暴露于等离子体射流kINPen的患者来源的GBM组织样本中,细胞凋亡显著增加。定量趋化因子/细胞因子释放筛选显示,气体等离子体暴露可使11种测试趋化因子和细胞因子中的5种显著减少,即参与GBM细胞凋亡和免疫调节的IL-6、TGF-β、sTREM-2、b-NGF和TNF-α。总之,本研究中显示的免疫调节和促凋亡作用可能是迈向首次临床观察性研究的重要一步,该研究旨在未来发现气体等离子体技术在神经外科和神经肿瘤学中的潜力,尤其是在假定的辅助或联合GBM治疗环境中。