Suppr超能文献

用机器学习方法估算可生物降解聚乳酸和聚乙醇酸聚合物复合材料的相对结晶度

Estimating the Relative Crystallinity of Biodegradable Polylactic Acid and Polyglycolide Polymer Composites by Machine Learning Methodologies.

作者信息

Wang Jing, Ayari Mohamed Arselene, Khandakar Amith, Chowdhury Muhammad E H, Uz Zaman Sm Ashfaq, Rahman Tawsifur, Vaferi Behzad

机构信息

College of Energy Engineering, Yulin University, Yulin 719000, China.

Department of Civil and Architectural Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.

出版信息

Polymers (Basel). 2022 Jan 28;14(3):527. doi: 10.3390/polym14030527.

Abstract

Biodegradable polymers have recently found significant applications in pharmaceutics processing and drug release/delivery. Composites based on poly (L-lactic acid) (PLLA) have been suggested to enhance the crystallization rate and relative crystallinity of pure PLLA polymers. Despite the large amount of experimental research that has taken place to date, the theoretical aspects of relative crystallinity have not been comprehensively investigated. Therefore, this research uses machine learning methods to estimate the relative crystallinity of biodegradable PLLA/PGA (polyglycolide) composites. Six different artificial intelligent classes were employed to estimate the relative crystallinity of PLLA/PGA polymer composites as a function of crystallization time, temperature, and PGA content. Cumulatively, 1510 machine learning topologies, including 200 multilayer perceptron neural networks, 200 cascade feedforward neural networks (CFFNN), 160 recurrent neural networks, 800 adaptive neuro-fuzzy inference systems, and 150 least-squares support vector regressions, were developed, and their prediction accuracy compared. The modeling results show that a single hidden layer CFFNN with 9 neurons is the most accurate method for estimating 431 experimentally measured datasets. This model predicts an experimental database with an average absolute percentage difference of 8.84%, root mean squared errors of 4.67%, and correlation coefficient (R) of 0.999008. The modeling results and relevancy studies show that relative crystallinity increases based on the PGA content and crystallization time. Furthermore, the effect of temperature on relative crystallinity is too complex to be easily explained.

摘要

可生物降解聚合物最近在药物制剂加工以及药物释放/递送方面有了重要应用。基于聚(L-乳酸)(PLLA)的复合材料已被认为可以提高纯PLLA聚合物的结晶速率和相对结晶度。尽管迄今为止已经进行了大量的实验研究,但相对结晶度的理论方面尚未得到全面研究。因此,本研究使用机器学习方法来估计可生物降解的PLLA/PGA(聚乙交酯)复合材料的相对结晶度。采用六种不同的人工智能类别来估计PLLA/PGA聚合物复合材料的相对结晶度,其作为结晶时间、温度和PGA含量的函数。总共开发了1510种机器学习拓扑结构,包括200个多层感知器神经网络、200个级联前馈神经网络(CFFNN)、160个递归神经网络、800个自适应神经模糊推理系统和150个最小二乘支持向量回归,并比较了它们的预测准确性。建模结果表明,具有9个神经元的单隐藏层CFFNN是估计431个实验测量数据集的最准确方法。该模型预测实验数据库的平均绝对百分比差异为8.84%,均方根误差为4.67%,相关系数(R)为0.999008。建模结果和相关性研究表明,相对结晶度随着PGA含量和结晶时间的增加而增加。此外,温度对相对结晶度的影响过于复杂,难以轻易解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1f4/8840207/024a4b853604/polymers-14-00527-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验