Suppr超能文献

基于微隔膜泵的微流控应用中的电容传感器和交流驱动混合。

Capacitive Sensor and Alternating Drive Mixing for Microfluidic Applications Using Micro Diaphragm Pumps.

机构信息

Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany.

Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Department of Electrical and Computer Engineering, TU Munich, Einsteinstrasse 25, 81675 Munich, Germany.

出版信息

Sensors (Basel). 2022 Feb 8;22(3):1273. doi: 10.3390/s22031273.

Abstract

Microfluidic systems are of paramount importance in various fields such as medicine, biology, and pharmacy. Despite the plethora of methods, accurate dosing and mixing of small doses of liquid reagents remain challenges for microfluidics. In this paper, we present a microfluidic device that uses two micro pumps and an alternating drive pattern to fill a microchannel. With a capacitive sensor system, we monitored the fluid process and controlled the micro pumps. In a first experiment, the system was set up to generate a 1:1 mixture between two fluids while using a range of fluid packet sizes from 0.25 to 2 µL and pumping frequencies from 50 to 100 Hz. In this parameter range, a dosing accuracy of 50.3 ± 0.9% was reached, validated by a gravimetric measurement. Other biased mixing ratios were tested as well and showed a deviation of 0.3 ± 0.3% from the targeted mixing ratio. In a second experiment, Trypan blue was used to study the mixing behavior of the system. Within one to two dosed packet sets, the two reagents were reliably mixed. The results are encouraging for future use of micro pumps and capacitive sensing in demanding microfluidic applications.

摘要

微流控系统在医学、生物学和药学等领域都具有至关重要的作用。尽管有许多方法,但对于微流控技术来说,准确地对小剂量液体试剂进行定量和混合仍然是一个挑战。在本文中,我们提出了一种使用两个微泵和交替驱动模式来填充微通道的微流控装置。我们使用电容式传感器系统来监测流体过程并控制微泵。在第一个实验中,该系统被设置为在使用 0.25 到 2 µL 之间的各种流体包大小和 50 到 100 Hz 的泵送频率的情况下,生成两种流体之间的 1:1 混合物。在这个参数范围内,通过称重测量,达到了 50.3 ± 0.9%的定量精度。我们还测试了其他偏置混合比,结果显示与目标混合比的偏差为 0.3 ± 0.3%。在第二个实验中,我们使用台盼蓝来研究该系统的混合行为。在一到两个剂量包组内,两种试剂可以可靠地混合。这些结果为未来在要求苛刻的微流控应用中使用微泵和电容感应技术提供了信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b844/8839760/d6956520d3da/sensors-22-01273-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验