Department of Mechanical Engineering, MIT, Cambridge, MA, USA.
Research Laboratory of Electronics, MIT, Cambridge, MA, USA and Department of Biological Engineering, MIT, Cambridge, MA, USA.
Lab Chip. 2018 Mar 13;18(6):902-914. doi: 10.1039/c7lc01223c.
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
在开放式微流控中进行精确的流体高度感测一直是广泛应用所期望的功能。然而,在小容量储液器(<1 毫升)中进行精确的液位测量已被证明是一个难以实现的目标,特别是如果需要避免直接接触流体传感器的话。特别是,在几个微流控应用中使用的重力驱动系统用于建立压力梯度并施加流动,由于这些传感限制,仍然是开环的并且在很大程度上未被监测。在这里,我们提出了一种优化的自屏蔽共面电容传感器设计和自动化控制系统,以提供亚毫米级的流体高度分辨率(约 250 μm),并在无需直接接触流体的情况下控制小型开放式储液器。我们优化的传感器和系统的测试和验证结果还表明,可以使用准确的流体高度信息来稳健地表征、校准和动态控制具有复杂泵送机制的各种微流控系统,即使在细胞培养条件下也是如此。电容传感技术为各种微流控应用中的小型重力主导井中的流体体积提供了一种可扩展且具有成本效益的连续监测和闭环反馈控制方式。