Suppr超能文献

通过自动化电容式流体高度感测实现微流控系统的闭环反馈控制。

Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

机构信息

Department of Mechanical Engineering, MIT, Cambridge, MA, USA.

Research Laboratory of Electronics, MIT, Cambridge, MA, USA and Department of Biological Engineering, MIT, Cambridge, MA, USA.

出版信息

Lab Chip. 2018 Mar 13;18(6):902-914. doi: 10.1039/c7lc01223c.

Abstract

Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

摘要

在开放式微流控中进行精确的流体高度感测一直是广泛应用所期望的功能。然而,在小容量储液器(<1 毫升)中进行精确的液位测量已被证明是一个难以实现的目标,特别是如果需要避免直接接触流体传感器的话。特别是,在几个微流控应用中使用的重力驱动系统用于建立压力梯度并施加流动,由于这些传感限制,仍然是开环的并且在很大程度上未被监测。在这里,我们提出了一种优化的自屏蔽共面电容传感器设计和自动化控制系统,以提供亚毫米级的流体高度分辨率(约 250 μm),并在无需直接接触流体的情况下控制小型开放式储液器。我们优化的传感器和系统的测试和验证结果还表明,可以使用准确的流体高度信息来稳健地表征、校准和动态控制具有复杂泵送机制的各种微流控系统,即使在细胞培养条件下也是如此。电容传感技术为各种微流控应用中的小型重力主导井中的流体体积提供了一种可扩展且具有成本效益的连续监测和闭环反馈控制方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f4/9011357/8e25991a3814/nihms-1784131-f0001.jpg

相似文献

3
Crack-Enhanced Microfluidic Stretchable E-Skin Sensor.裂纹增强型微流控可拉伸电子皮肤传感器。
ACS Appl Mater Interfaces. 2017 Dec 27;9(51):44678-44686. doi: 10.1021/acsami.7b15999. Epub 2017 Dec 14.
5
Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.集成了气动流体控制装置的微流控pH传感芯片。
Biosens Bioelectron. 2006 Feb 15;21(8):1468-75. doi: 10.1016/j.bios.2005.06.005. Epub 2005 Aug 11.
10
Long-range electrothermal fluid motion in microfluidic systems.微流体系统中的远程电热流体运动。
Int J Heat Mass Transf. 2016 Jul;98:341-349. doi: 10.1016/j.ijheatmasstransfer.2016.03.034.

引用本文的文献

8
A frugal microfluidic pump.一种节俭的微流控泵。
Lab Chip. 2021 Dec 7;21(24):4772-4778. doi: 10.1039/d1lc00691f.

本文引用的文献

3
Emerging Technologies for Next-Generation Point-of-Care Testing.新兴技术在下一代即时检测中的应用。
Trends Biotechnol. 2015 Nov;33(11):692-705. doi: 10.1016/j.tibtech.2015.09.001. Epub 2015 Oct 17.
6
Accelerating drug discovery via organs-on-chips.通过器官芯片加速药物发现。
Lab Chip. 2013 Dec 21;13(24):4697-710. doi: 10.1039/c3lc90115g.
7
Pumps for microfluidic cell culture.用于微流控细胞培养的泵
Electrophoresis. 2014 Feb;35(2-3):245-57. doi: 10.1002/elps.201300205. Epub 2013 Oct 1.
9
Pumpless steady-flow microfluidic chip for cell culture.无泵稳流微流控芯片用于细胞培养。
Anal Biochem. 2013 Jun 15;437(2):161-3. doi: 10.1016/j.ab.2013.02.007. Epub 2013 Feb 27.
10
Measurement of microchannel fluidic resistance with a standard voltage meter.用标准电压表测量微通道流阻。
Anal Chim Acta. 2013 Jan 3;758:101-7. doi: 10.1016/j.aca.2012.10.043. Epub 2012 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验