Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran.
National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd 8917357676, Iran.
Int J Environ Res Public Health. 2022 Jan 29;19(3):1576. doi: 10.3390/ijerph19031576.
Although the effects of salicylic acid (SA) on increasing plant growth in saline conditions have been well known, the mechanisms of induction of salinity tolerance, especially in quinoa ( Willd.), are not fully understood. In the present work, two quinoa genotypes (Titicaca and Giza1) were treated with different SA concentrations (0, 0.75, and 1.5 mM) under varied irrigation water salinities (0, 7, 14, and 21 dS m). Salinity decreased shoot and root growth, potassium (K) concentration, and potassium to sodium ratio (K/Na) and increased sodium (Na) and chlorine (Cl) concentrations in both cultivars. Calcium (Ca) and magnesium (Mg) concentrations increased in 7 dS m but decreased in higher salinities. The growth and salinity tolerance of Giza1 were higher, while the growth of Giza1 increased and of Titicaca decreased in high salinity. Salicylic acid at 0.75-mM concentration increased shoot and root growth and improved the ions concentration in favor of the plant, while the 1.5-mM concentration either had no significant effect or had a negative impact. The ions distribution estimated by K/Na selectivity and storage factor (SF) indicated quinoa accumulated more ions in roots under saline conditions. Salicylic acid increased NaSF, ClSF, and MgSF and decreased KSF and CaSF, meaning less Na, Cl, and Mg and more K and Ca transferred to shoots in SA-treated plants. Importantly, Giza1, as the more tolerant cultivar, had higher NaSF and ClSF and lower KSF, CaSF, and MgSF. In general, the concentrations of ions in roots were higher than in shoots. The results indicated more ions accumulation in the root could be one of the most important mechanisms of salinity tolerance in quinoa, and the more tolerant cultivar (Giza1) transferred less Na and Cl and more K and Ca and Mg to the shoot.
虽然水杨酸(SA)对增加盐胁迫条件下植物生长的作用已众所周知,但诱导耐盐性的机制,特别是在藜麦(Willd.)中,仍不完全清楚。本研究用不同浓度的水杨酸(0、0.75 和 1.5 mM)处理两个藜麦基因型(Titicaca 和 Giza1),并在不同灌溉水盐度(0、7、14 和 21 dS m)下进行处理。盐度降低了 shoot 和 root 的生长、钾(K)浓度、钾钠比(K/Na),并增加了钠(Na)和氯(Cl)的浓度,在两个品种中均如此。在 7 dS m 下,Ca 和 Mg 的浓度增加,但在更高盐度下则降低。Giza1 的生长和耐盐性较高,而高盐度下 Giza1 的生长增加,Titicaca 的生长减少。0.75 mM 浓度的水杨酸增加了 shoot 和 root 的生长,并改善了有利于植物的离子浓度,而 1.5 mM 浓度要么没有显著影响,要么产生负面影响。通过 K/Na 选择性和储存因子(SF)估计的离子分布表明,藜麦在盐胁迫条件下在根部积累了更多的离子。水杨酸增加了 NaSF、ClSF 和 MgSF,降低了 KSF 和 CaSF,这意味着在水杨酸处理的植物中,更多的 Na、Cl 和 Mg 以及更少的 K 和 Ca 转移到 shoot 中。重要的是,作为更耐盐品种的 Giza1,具有更高的 NaSF 和 ClSF,以及更低的 KSF、CaSF 和 MgSF。总的来说,根部的离子浓度高于 shoot。结果表明,根部积累更多的离子可能是藜麦耐盐性的最重要机制之一,更耐盐的品种(Giza1)将更少的 Na 和 Cl 以及更多的 K、Ca 和 Mg 转移到 shoot 中。