Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712.
Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany.
Biointerphases. 2021 Jan 28;16(1):011006. doi: 10.1116/6.0000743.
The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December-February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)引起的新型冠状病毒已蔓延至 160 多个国家,并已被宣布为大流行。SARS-CoV-2 通过病毒包膜上的刺突(S)受体结合蛋白(RBD)与血管紧张素转换酶 2(ACE-2)表面受体结合感染宿主细胞。2002 年 SARS-CoV-1 引起的类似传染病的全球数据表明,病毒在较低温度下的稳定性提高,从而促进其在较冷月份(12 月至 2 月)在社区中的高传播。季节性病毒传播受到温度的强烈调节,温度会影响病毒进入宿主细胞的运输;然而,SARS-CoV-2 对温度依赖性活性的实验研究仍然缺乏。我们用涂有 SARS-CoV-2 S 蛋白的聚合物珠模拟 SARS-CoV-2,以研究季节性温度对模拟病毒纳米球与肺上皮细胞结合的影响。纳米球表面存在 S 蛋白 RBD 可通过 ACE-2 受体与 Calu-3 气道上皮细胞结合。Calu-3 和带有 S-RBD 涂层纳米球的对照成纤维细胞在 33 和 37°C 下孵育以模拟宿主呼吸道中的温度波动,与牛血清白蛋白涂层纳米球的非特异性结合相反,我们没有发现温度依赖性。此外,环境温度从 4 到 40°C 的变化对 S-RBD-ACE-2 配体受体结合没有影响,对 S-RBD 蛋白结构的影响最小(高达 40°C),尽管在 51°C 时发生蛋白质变性。我们的研究结果表明,环境温度在 4 到 40°C 之间对 SARS-CoV-2-ACE-2 相互作用的影响很小,与目前报告的感染数据一致。