Department of Business Administration, Dokuz Eylül University, Izmir, Turkey.
Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
BMJ Open. 2022 Feb 14;12(2):e055562. doi: 10.1136/bmjopen-2021-055562.
To investigate macro-scale estimators of the variations in COVID-19 cases and deaths among countries.
Epidemiological study.
Country-based data from publicly available online databases of international organisations.
The study involved 170 countries/territories, each of which had complete COVID-19 and tuberculosis data, as well as specific health-related estimators (obesity, hypertension, diabetes and hypercholesterolaemia).
The worldwide heterogeneity of the total number of COVID-19 cases and deaths per million on 31 December 2020 was analysed by 17 macro-scale estimators around the health-related, socioeconomic, climatic and political factors. In 139 of 170 nations, the best subsets regression was used to investigate all potential models of COVID-19 variations among countries. A multiple linear regression analysis was conducted to explore the predictive capacity of these variables. The same analysis was applied to the number of deaths per hundred thousand due to tuberculosis, a quite different infectious disease, to validate and control the differences with the proposed models for COVID-19.
In the model for the COVID-19 cases (R=0.45), obesity (β=0.460), hypertension (β=0.214), sunshine (β=-0.157) and transparency (β=0.147); whereas in the model for COVID-19 deaths (R=0.41), obesity (β=0.279), hypertension (β=0.285), alcohol consumption (β=0.173) and urbanisation (β=0.204) were significant factors (p<0.05). Unlike COVID-19, the tuberculosis model contained significant indicators like obesity, undernourishment, air pollution, age, schooling, democracy and Gini Inequality Index.
This study recommends the new predictors explaining the global variability of COVID-19. Thus, it might assist policymakers in developing health policies and social strategies to deal with COVID-19.
ClinicalTrials.gov Registry (NCT04486508).
研究各国 COVID-19 病例和死亡的宏观估计值变化。
流行病学研究。
来自国际组织公开在线数据库的国家数据。
本研究涉及 170 个国家/地区,每个国家/地区都有完整的 COVID-19 和结核病数据,以及特定的与健康相关的估计值(肥胖、高血压、糖尿病和高胆固醇血症)。
使用 17 个与健康相关、社会经济、气候和政治因素有关的宏观估计值,分析 2020 年 12 月 31 日每百万 COVID-19 病例和死亡的全球异质性。在 170 个国家中的 139 个国家中,使用最佳子集回归调查了国家之间 COVID-19 变异的所有潜在模型。进行了多元线性回归分析,以探索这些变量的预测能力。同样的分析应用于因结核病(一种截然不同的传染病)而导致的每十万死亡人数,以验证和控制与 COVID-19 提出的模型的差异。
在 COVID-19 病例模型中(R=0.45),肥胖(β=0.460)、高血压(β=0.214)、阳光(β=-0.157)和透明度(β=0.147);而在 COVID-19 死亡模型中(R=0.41),肥胖(β=0.279)、高血压(β=0.285)、饮酒(β=0.173)和城市化(β=0.204)是显著因素(p<0.05)。与 COVID-19 不同,结核病模型包含了肥胖、营养不良、空气污染、年龄、教育、民主和基尼不平等指数等重要指标。
本研究推荐了新的预测指标,解释了 COVID-19 的全球变异性。因此,它可能有助于政策制定者制定卫生政策和社会战略来应对 COVID-19。
ClinicalTrials.gov 注册(NCT04486508)。