Suppr超能文献

通过使用基于在线国家数据源的回归分析,研究宏观尺度估计值对全球 COVID-19 发病和死亡的影响。

Investigating the effect of macro-scale estimators on worldwide COVID-19 occurrence and mortality through regression analysis using online country-based data sources.

机构信息

Department of Business Administration, Dokuz Eylül University, Izmir, Turkey.

Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey

出版信息

BMJ Open. 2022 Feb 14;12(2):e055562. doi: 10.1136/bmjopen-2021-055562.

Abstract

OBJECTIVE

To investigate macro-scale estimators of the variations in COVID-19 cases and deaths among countries.

DESIGN

Epidemiological study.

SETTING

Country-based data from publicly available online databases of international organisations.

PARTICIPANTS

The study involved 170 countries/territories, each of which had complete COVID-19 and tuberculosis data, as well as specific health-related estimators (obesity, hypertension, diabetes and hypercholesterolaemia).

PRIMARY AND SECONDARY OUTCOME MEASURES

The worldwide heterogeneity of the total number of COVID-19 cases and deaths per million on 31 December 2020 was analysed by 17 macro-scale estimators around the health-related, socioeconomic, climatic and political factors. In 139 of 170 nations, the best subsets regression was used to investigate all potential models of COVID-19 variations among countries. A multiple linear regression analysis was conducted to explore the predictive capacity of these variables. The same analysis was applied to the number of deaths per hundred thousand due to tuberculosis, a quite different infectious disease, to validate and control the differences with the proposed models for COVID-19.

RESULTS

In the model for the COVID-19 cases (R=0.45), obesity (β=0.460), hypertension (β=0.214), sunshine (β=-0.157) and transparency (β=0.147); whereas in the model for COVID-19 deaths (R=0.41), obesity (β=0.279), hypertension (β=0.285), alcohol consumption (β=0.173) and urbanisation (β=0.204) were significant factors (p<0.05). Unlike COVID-19, the tuberculosis model contained significant indicators like obesity, undernourishment, air pollution, age, schooling, democracy and Gini Inequality Index.

CONCLUSIONS

This study recommends the new predictors explaining the global variability of COVID-19. Thus, it might assist policymakers in developing health policies and social strategies to deal with COVID-19.

TRIAL REGISTRATION NUMBER

ClinicalTrials.gov Registry (NCT04486508).

摘要

目的

研究各国 COVID-19 病例和死亡的宏观估计值变化。

设计

流行病学研究。

设置

来自国际组织公开在线数据库的国家数据。

参与者

本研究涉及 170 个国家/地区,每个国家/地区都有完整的 COVID-19 和结核病数据,以及特定的与健康相关的估计值(肥胖、高血压、糖尿病和高胆固醇血症)。

主要和次要结果

使用 17 个与健康相关、社会经济、气候和政治因素有关的宏观估计值,分析 2020 年 12 月 31 日每百万 COVID-19 病例和死亡的全球异质性。在 170 个国家中的 139 个国家中,使用最佳子集回归调查了国家之间 COVID-19 变异的所有潜在模型。进行了多元线性回归分析,以探索这些变量的预测能力。同样的分析应用于因结核病(一种截然不同的传染病)而导致的每十万死亡人数,以验证和控制与 COVID-19 提出的模型的差异。

结果

在 COVID-19 病例模型中(R=0.45),肥胖(β=0.460)、高血压(β=0.214)、阳光(β=-0.157)和透明度(β=0.147);而在 COVID-19 死亡模型中(R=0.41),肥胖(β=0.279)、高血压(β=0.285)、饮酒(β=0.173)和城市化(β=0.204)是显著因素(p<0.05)。与 COVID-19 不同,结核病模型包含了肥胖、营养不良、空气污染、年龄、教育、民主和基尼不平等指数等重要指标。

结论

本研究推荐了新的预测指标,解释了 COVID-19 的全球变异性。因此,它可能有助于政策制定者制定卫生政策和社会战略来应对 COVID-19。

试验注册

ClinicalTrials.gov 注册(NCT04486508)。

相似文献

2
The Determinants of the Low COVID-19 Transmission and Mortality Rates in Africa: A Cross-Country Analysis.
Front Public Health. 2021 Oct 21;9:751197. doi: 10.3389/fpubh.2021.751197. eCollection 2021.
5
Assessing sub-regional-specific strengths of healthcare systems associated with COVID-19 prevalence, deaths and recoveries in Africa.
PLoS One. 2021 Mar 1;16(3):e0247274. doi: 10.1371/journal.pone.0247274. eCollection 2021.
8
Effect of heat and humidity on the incidence and mortality due to COVID-19 pandemic in European countries.
Eur Rev Med Pharmacol Sci. 2020 Sep;24(17):9216-9225. doi: 10.26355/eurrev_202009_22874.
9
SARS-CoV-2 Surveillance in the Middle East and North Africa: Longitudinal Trend Analysis.
J Med Internet Res. 2021 Jan 15;23(1):e25830. doi: 10.2196/25830.
10
COVID-19, body mass index and cholesterol: an ecological study using global data.
BMC Public Health. 2021 Sep 21;21(1):1712. doi: 10.1186/s12889-021-11715-7.

本文引用的文献

1
UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication.
Sci Rep. 2021 Mar 18;11(1):6260. doi: 10.1038/s41598-021-85425-w.
2
The exposure risk to COVID-19 in most affected countries: A vulnerability assessment model.
PLoS One. 2021 Mar 4;16(3):e0248075. doi: 10.1371/journal.pone.0248075. eCollection 2021.
3
The Possible Relationship between the Abuse of Tobacco, Opioid, or Alcohol with COVID-19.
Healthcare (Basel). 2020 Dec 22;9(1):2. doi: 10.3390/healthcare9010002.
4
Containment measures limit environmental effects on COVID-19 early outbreak dynamics.
Sci Total Environ. 2021 Mar 20;761:144432. doi: 10.1016/j.scitotenv.2020.144432. Epub 2020 Dec 16.
5
Alcohol Consumption and the Risk of Acute Respiratory Distress Syndrome in COVID-19.
Ann Am Thorac Soc. 2021 Jun;18(6):1074-1076. doi: 10.1513/AnnalsATS.202008-988RL.
6
Alcohol consumption and obesity: The hidden scare with COVID-19 severity.
Med Hypotheses. 2020 Nov;144:110272. doi: 10.1016/j.mehy.2020.110272. Epub 2020 Sep 16.
7
Socio-economic status and COVID-19-related cases and fatalities.
Public Health. 2020 Dec;189:129-134. doi: 10.1016/j.puhe.2020.09.016. Epub 2020 Oct 17.
9
Insights into disparities observed with COVID-19.
J Intern Med. 2021 Apr;289(4):463-473. doi: 10.1111/joim.13199. Epub 2020 Dec 6.
10
Explaining among-country variation in COVID-19 case fatality rate.
Sci Rep. 2020 Nov 3;10(1):18909. doi: 10.1038/s41598-020-75848-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验