Suppr超能文献

动态 FMR1 颗粒相转换由 m6A 修饰指导,有助于母源 RNA 降解。

Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay.

机构信息

Institute of Biomedical Research, Yunnan University, Kunming, China.

State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2022 Feb 14;13(1):859. doi: 10.1038/s41467-022-28547-7.

Abstract

Maternal RNA degradation is critical for embryogenesis and is tightly controlled by maternal RNA-binding proteins. Fragile X mental-retardation protein (FMR1) binds target mRNAs to form ribonucleoprotein (RNP) complexes/granules that control various biological processes, including early embryogenesis. However, how FMR1 recognizes target mRNAs and how FMR1-RNP granule assembly/disassembly regulates FMR1-associated mRNAs remain elusive. Here we show that Drosophila FMR1 preferentially binds mRNAs containing m6A-marked "AGACU" motif with high affinity to contributes to maternal RNA degradation. The high-affinity binding largely depends on a hydrophobic network within FMR1 KH2 domain. Importantly, this binding greatly induces FMR1 granule condensation to efficiently recruit unmodified mRNAs. The degradation of maternal mRNAs then causes granule de-condensation, allowing normal embryogenesis. Our findings reveal that sequence-specific mRNAs instruct FMR1-RNP granules to undergo a dynamic phase-switch, thus contributes to maternal mRNA decay. This mechanism may represent a general principle that regulated RNP-granules control RNA processing and normal development.

摘要

母体 RNA 降解对于胚胎发生至关重要,并受到母体 RNA 结合蛋白的严格控制。脆性 X 智力迟钝蛋白 (FMR1) 结合靶 mRNA 形成核糖核蛋白 (RNP) 复合物/颗粒,控制包括早期胚胎发生在内的各种生物学过程。然而,FMR1 如何识别靶 mRNA,以及 FMR1-RNP 颗粒的组装/解组装如何调节与 FMR1 相关的 mRNA,仍然难以捉摸。在这里,我们表明果蝇 FMR1 优先结合富含 m6A 标记的“AGACU”基序的 mRNA,具有高亲和力,有助于母体 RNA 降解。这种高亲和力结合在很大程度上取决于 FMR1 KH2 结构域内的疏水网络。重要的是,这种结合极大地诱导 FMR1 颗粒的凝聚,从而有效地招募未修饰的 mRNA。随后,母体 mRNA 的降解导致颗粒解凝聚,从而允许正常的胚胎发生。我们的研究结果表明,序列特异性 mRNA 指导 FMR1-RNP 颗粒发生动态相转换,从而有助于母体 mRNA 衰减。这种机制可能代表一种普遍原则,即受调控的 RNP 颗粒控制 RNA 加工和正常发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edb0/8844045/90c8348f0914/41467_2022_28547_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验