Suppr超能文献

人体肠道中复杂碳水化合物降解细菌的表型和基因组多样化。

Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria.

机构信息

Department of Microbiology and Immunology, University of Michigan Medical Schoolgrid.471406.0, Ann Arbor, Michigan, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan Medical Schoolgrid.471406.0, Ann Arbor, Michigan, USA.

出版信息

mSystems. 2022 Feb 22;7(1):e0094721. doi: 10.1128/msystems.00947-21. Epub 2022 Feb 15.

Abstract

Symbiotic bacteria are responsible for the majority of complex carbohydrate digestion in the human colon. Since the identities and amounts of dietary polysaccharides directly impact the gut microbiota, determining which microorganisms consume specific nutrients is central for defining the relationship between diet and gut microbial ecology. Using a custom phenotyping array, we determined carbohydrate utilization profiles for 354 members of the , a dominant saccharolytic phylum. There was wide variation in the numbers and types of substrates degraded by individual bacteria, but phenotype-based clustering grouped members of the same species indicating that each species performs characteristic roles. The ability to utilize dietary polysaccharides and endogenous mucin glycans was negatively correlated, suggesting exclusion between these niches. By analyzing related Bacteroides ovatusBacteroides xylanisolvens strains that vary in their ability to utilize mucin glycans, we addressed whether gene clusters that confer this complex, multilocus trait are being gained or lost in individual strains. Pangenome reconstruction of these strains revealed a remarkably mosaic architecture in which genes involved in polysaccharide metabolism are highly variable and bioinformatics data provide evidence of interspecies gene transfer that might explain this genomic heterogeneity. Global transcriptomic analyses suggest that the ability to utilize mucin has been lost in some lineages of and , which harbor residual gene clusters that are involved in mucin utilization by strains that still actively express this phenotype. Our data provide insight into the breadth and complexity of carbohydrate metabolism in the microbiome and the underlying genomic events that shape these behaviors. Nonharmful bacteria are the primary microbial symbionts that inhabit the human gastrointestinal tract. These bacteria play many beneficial roles and in some cases can modify disease states, making it important to understand which nutrients sustain specific lineages. This knowledge will in turn lead to strategies to intentionally manipulate the gut microbial ecosystem. We designed a scalable, high-throughput platform for measuring the ability of gut bacteria to utilize polysaccharides, of which many are derived from dietary fiber sources that can be manipulated easily. Our results provide paths to expand phenotypic surveys of more diverse gut bacteria to understand their functions and also to leverage dietary fibers to alter the physiology of the gut microbial community.

摘要

共生细菌负责人类结肠中大多数复杂碳水化合物的消化。由于饮食中多糖的种类和数量直接影响肠道微生物群,因此确定哪些微生物消耗特定的营养物质是定义饮食与肠道微生物生态学之间关系的核心。我们使用定制的表型数组,确定了 门的 354 个成员的碳水化合物利用谱,这是一种主要的糖分解菌门。单个细菌降解的底物数量和类型存在广泛的变化,但基于表型的聚类将同一物种的成员分组在一起,表明每个物种都发挥着特征性的作用。利用饮食多糖和内源性粘蛋白聚糖的能力呈负相关,表明这些生态位之间存在排斥。通过分析相关的卵形拟杆菌和木聚糖分解拟杆菌菌株,它们在利用粘蛋白聚糖的能力上存在差异,我们解决了在单个菌株中赋予这种复杂的、多基因座特征的基因簇是获得还是丢失的问题。这些菌株的泛基因组重建揭示了一个惊人的镶嵌结构,其中参与多糖代谢的基因高度可变,生物信息学数据提供了种间基因转移的证据,这可能解释了这种基因组异质性。全基因组转录组分析表明,某些 和 谱系已经失去了利用粘蛋白的能力,这些谱系中仍有残余的基因簇参与粘蛋白的利用,但仍有菌株积极表达这种表型。我们的数据为微生物组中碳水化合物代谢的广度和复杂性以及塑造这些行为的潜在基因组事件提供了深入的了解。非有害细菌是栖息在人类胃肠道中的主要微生物共生体。这些细菌发挥着许多有益的作用,在某些情况下可以改变疾病状态,因此了解哪些营养物质维持特定的谱系非常重要。这一知识反过来又将导致有意操纵肠道微生物生态系统的策略。我们设计了一种可扩展的、高通量的平台,用于测量肠道细菌利用多糖的能力,其中许多多糖来自膳食纤维来源,这些膳食纤维很容易被操纵。我们的研究结果为扩展对更多不同肠道细菌的表型调查提供了途径,以了解它们的功能,并利用膳食纤维改变肠道微生物群落的生理学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e39/8845570/ba876e6d43d4/msystems.00947-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验