MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
Science. 2019 Jan 18;363(6424). doi: 10.1126/science.aau8302.
Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.
光学和电子显微镜在理解大脑的复杂性方面取得了巨大的进展。然而,光学显微镜的分辨率不足以揭示亚细胞细节,而电子显微镜缺乏通量和分子对比度,无法在毫米级或更大的尺寸上可视化特定的分子成分。我们将扩展显微镜和晶格光片显微镜相结合,以在小鼠皮层或整个大脑的厚度上成像蛋白质之间的纳米级空间关系。这些蛋白质包括树突棘中的突触蛋白、轴突上的髓鞘形成以及多巴胺能神经元中的突触前密度。这项技术应该能够实现具有统计学意义的、大规模的神经发育、性别二态性、刻板程度、以及与行为或神经活动的结构相关性研究,所有这些都具有分子对比度。