Department of Computer Science, Technical University of Munich, Garching, Germany; GE Healthcare, Munich, Germany.
IRCCS Fondazione Stella Maris, Pisa, Italy; Fondazione Imago7, Pisa, Italy.
Med Image Anal. 2022 Apr;77:102387. doi: 10.1016/j.media.2022.102387. Epub 2022 Feb 7.
Voluntary and involuntary patient motion is a major problem for data quality in clinical routine of Magnetic Resonance Imaging (MRI). It has been thoroughly investigated and, yet it still remains unresolved. In quantitative MRI, motion artifacts impair the entire temporal evolution of the magnetization and cause errors in parameter estimation. Here, we present a novel strategy based on residual learning for retrospective motion correction in fast 3D whole-brain multiparametric MRI. We propose a 3D multiscale convolutional neural network (CNN) that learns the non-linear relationship between the motion-affected quantitative parameter maps and the residual error to their motion-free reference. For supervised model training, despite limited data availability, we propose a physics-informed simulation to generate self-contained paired datasets from a priori motion-free data. We evaluate motion-correction performance of the proposed method for the example of 3D Quantitative Transient-state Imaging at 1.5T and 3T. We show the robustness of the motion correction for various motion regimes and demonstrate the generalization capabilities of the residual CNN in terms of real-motion in vivo data of healthy volunteers and clinical patient cases, including pediatric and adult patients with large brain lesions. Our study demonstrates that the proposed motion correction outperforms current state of the art, reliably providing a high, clinically relevant image quality for mild to pronounced patient movements. This has important implications in clinical setups where large amounts of motion affected data must be discarded as they are rendered diagnostically unusable.
自愿和非自愿的患者运动是磁共振成像(MRI)临床常规中数据质量的主要问题。它已经被彻底研究过了,但仍然没有得到解决。在定量 MRI 中,运动伪影会损害磁化的整个时间演化,并导致参数估计错误。在这里,我们提出了一种基于残差学习的新策略,用于快速 3D 全脑多参数 MRI 的回顾性运动校正。我们提出了一个 3D 多尺度卷积神经网络(CNN),它学习运动影响的定量参数图与运动自由参考的残差之间的非线性关系。对于监督模型训练,尽管数据有限,我们还是提出了一种物理信息模拟,从先验无运动数据中生成自包含的配对数据集。我们以 1.5T 和 3T 下的 3D 定量瞬态成像为例,评估了所提出方法的运动校正性能。我们展示了该运动校正对于各种运动状态的鲁棒性,并证明了残差 CNN 在健康志愿者和临床患者(包括患有大脑部病变的儿科和成年患者)的实际运动数据方面的泛化能力。我们的研究表明,所提出的运动校正方法优于目前的技术水平,可靠地为轻度到明显的患者运动提供了高的、临床相关的图像质量。这在临床环境中具有重要意义,在这种环境中,大量受运动影响的数据必须被丢弃,因为它们在诊断上无法使用。