Universidade de Caxias do Sul, Instituto de Biotecnologia, Laboratório de Bioinformática e Biologia Computacional, Caxias do Sul, Rio Grande do Sul, Brazil; Universidade do Estado da Bahia, Departamento de Ciências Exatas e da Terra, Salvador, Bahia, Brazil.
Universidade de Caxias do Sul, Instituto de Biotecnologia, Laboratório de Bioinformática e Biologia Computacional, Caxias do Sul, Rio Grande do Sul, Brazil.
Gene. 2022 May 15;822:146345. doi: 10.1016/j.gene.2022.146345. Epub 2022 Feb 18.
Penicillium echinulatum 2HH is an ascomycete well known for its production of cellulolytic enzymes. Understanding lignocellulolytic and sugar uptake systems is essential to obtain efficient fungi strains for the production of bioethanol. In this study we performed a genome-wide functional annotation of carbohydrate-active enzymes and sugar transporters involved in the lignocellulolytic system of P. echinulatum 2HH and S1M29 strains (wildtype and mutant, respectively) and eleven related fungi. Additionally, signal peptide and orthology prediction were carried out. We encountered a diverse assortment of cellulolytic enzymes in P. echinulatum, especially in terms of β-glucosidases and endoglucanases. Other enzymes required for the breakdown of cellulosic biomass were also found, including cellobiohydrolases, lytic cellulose monooxygenases and cellobiose dehydrogenases. The S1M29 mutant, which is known to produce an increased cellulase activity, and the 2HH wild type strain of P. echinulatum did not show significant differences between their enzymatic repertoire. Nevertheless, we unveiled an amino acid substitution for a predicted intracellular β-glucosidase of the mutant, which might contribute to hyperexpression of cellulases through a cellodextrin induction pathway. Most of the P. echinulatum enzymes presented orthologs in P. oxalicum 114-2, supporting the presence of highly similar cellulolytic mechanisms and a close phylogenetic relationship between these fungi. A phylogenetic analysis of intracellular β-glucosidases and sugar transporters allowed us to identify several proteins potentially involved in the accumulation of intracellular cellodextrins. These may prove valuable targets in the genetic engineering of P. echinulatum focused on industrial cellulases production. Our study marks an important step in characterizing and understanding the molecular mechanisms employed by P. echinulatum in the enzymatic hydrolysis of lignocellulosic biomass.
栓菌 2HH 是一种子囊菌,以其产生纤维素酶而闻名。了解木质纤维素和糖摄取系统对于获得用于生产生物乙醇的高效真菌菌株至关重要。在这项研究中,我们对栓菌 2HH 和 S1M29 菌株(野生型和突变型,分别)以及 11 种相关真菌的木质纤维素系统中涉及的碳水化合物活性酶和糖转运蛋白进行了全基因组功能注释。此外,还进行了信号肽和同源性预测。我们在栓菌中遇到了各种各样的纤维素酶,特别是β-葡萄糖苷酶和内切葡聚糖酶。还发现了其他用于分解纤维素生物质的酶,包括纤维二糖水解酶、溶纤维素单加氧酶和纤维二糖脱氢酶。S1M29 突变体以产生增加的纤维素酶活性而闻名,而栓菌的 2HH 野生型菌株在其酶谱中没有显示出显著差异。然而,我们揭示了突变体中预测的细胞内β-葡萄糖苷酶的一个氨基酸取代,这可能通过纤维二糖诱导途径导致纤维素酶的过度表达。栓菌的大多数酶在 P. oxalicum 114-2 中都有同源物,支持这些真菌之间存在高度相似的纤维素酶机制和密切的系统发育关系。细胞内β-葡萄糖苷酶和糖转运蛋白的系统发育分析使我们能够鉴定出几种可能参与细胞内纤维二糖积累的蛋白质。这些可能成为以工业纤维素酶生产为目标的栓菌遗传工程的有价值的靶点。我们的研究标志着对栓菌在木质纤维素生物质酶水解中所采用的分子机制进行表征和理解的重要一步。