Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy.
Department of Statistical Sciences, University of Padova, Padova, Italy.
Biometrics. 2023 Jun;79(2):1370-1382. doi: 10.1111/biom.13626. Epub 2022 Mar 28.
Recent advancements in miniaturized fluorescence microscopy have made it possible to investigate neuronal responses to external stimuli in awake behaving animals through the analysis of intracellular calcium signals. An ongoing challenge is deconvolving the temporal signals to extract the spike trains from the noisy calcium signals' time series. In this article, we propose a nested Bayesian finite mixture specification that allows the estimation of spiking activity and, simultaneously, reconstructing the distributions of the calcium transient spikes' amplitudes under different experimental conditions. The proposed model leverages two nested layers of random discrete mixture priors to borrow information between experiments and discover similarities in the distributional patterns of neuronal responses to different stimuli. Furthermore, the spikes' intensity values are also clustered within and between experimental conditions to determine the existence of common (recurring) response amplitudes. Simulation studies and the analysis of a dataset from the Allen Brain Observatory show the effectiveness of the method in clustering and detecting neuronal activities.
近年来,微型化荧光显微镜技术的发展使得通过分析细胞内钙信号来研究清醒活动动物对外界刺激的神经元反应成为可能。目前面临的一个挑战是,如何对时间信号进行去卷积,以便从嘈杂的钙信号时间序列中提取尖峰序列。在本文中,我们提出了一种嵌套贝叶斯有限混合规范,允许估计尖峰活动,并同时在不同实验条件下重建钙瞬变尖峰幅度的分布。所提出的模型利用两层嵌套的随机离散混合先验来在实验之间借用信息,并发现神经元对不同刺激的反应分布模式的相似性。此外,尖峰的强度值也在实验条件内和条件之间进行聚类,以确定是否存在共同(重复)的响应幅度。模拟研究和对艾伦脑观测站数据集的分析表明,该方法在聚类和检测神经元活动方面的有效性。