Suppr超能文献

一种基于分类学的仅存在数据联合物种分布模型。

A taxonomic-based joint species distribution model for presence-only data.

作者信息

Escamilla Molgora Juan M, Sedda Luigi, Diggle Peter J, Atkinson Peter M

机构信息

Lancaster Environment Centre.

Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Faculty of Health and Medicine, and.

出版信息

J R Soc Interface. 2022 Feb;19(187):20210681. doi: 10.1098/rsif.2021.0681. Epub 2022 Feb 23.

Abstract

Species distribution models (SDMs) are an important class of model for mapping taxa spatially and are a key tool for tackling biodiversity loss. However, most common SDMs depend on presence-absence data and, despite the accumulation and exponential growth of biological occurrence data across the globe, the available data are predominantly presence-only (i.e. they lack real absences). Although presence-only SDMs do exist, they inevitably require assumptions about absences of the considered taxa and they are specified mostly for single species and, thus, do not exploit fully the information in related taxa. This greatly limits the utility of global biodiversity databases such as GBIF. Here, we present a Bayesian-based SDM for multiple species that operates directly on presence-only data by exploiting the joint distribution between the multiple ecological processes and, crucially, identifies the sampling effort per taxa which allows inference on absences. The model was applied to two case studies. One, focusing on taxonomically diverse taxa over central Mexico and another focusing on the monophyletic family Cactacea over continental Mexico. In both cases, the model was able to identify the ecological and sampling effort processes for each taxon using only the presence observations, environmental and anthropological data.

摘要

物种分布模型(SDMs)是用于在空间上绘制分类单元的一类重要模型,也是应对生物多样性丧失的关键工具。然而,大多数常见的物种分布模型依赖于有无数据,尽管全球生物出现数据不断积累且呈指数增长,但可用数据主要是仅存在数据(即它们缺乏实际的缺失数据)。虽然仅存在物种分布模型确实存在,但它们不可避免地需要对所考虑分类单元的缺失情况进行假设,并且大多是针对单一物种指定的,因此没有充分利用相关分类单元中的信息。这极大地限制了诸如全球生物多样性信息机构(GBIF)等全球生物多样性数据库的效用。在此,我们提出一种基于贝叶斯的多物种物种分布模型,该模型通过利用多个生态过程之间的联合分布直接对仅存在数据进行操作,并且至关重要的是,确定每个分类单元的采样努力,从而能够对缺失情况进行推断。该模型应用于两个案例研究。一个案例聚焦于墨西哥中部分类多样的分类单元,另一个案例聚焦于墨西哥大陆的单系仙人掌科。在这两个案例中,该模型仅使用存在观测值、环境和人类学数据就能识别每个分类单元的生态和采样努力过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf59/8864348/a477a2e4215b/rsif20210681f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验