Suppr超能文献

癫痫诱导的齿状回内兴奋回路的反复强化是促惊厥的。

Seizure-induced strengthening of a recurrent excitatory circuit in the dentate gyrus is proconvulsant.

机构信息

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461.

Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2201151119. doi: 10.1073/pnas.2201151119. Epub 2022 Aug 5.

Abstract

Epilepsy is a devastating brain disorder for which effective treatments are very limited. There is growing interest in early intervention, which requires a better mechanistic understanding of the early stages of this disorder. While diverse brain insults can lead to epileptic activity, a common cellular mechanism relies on uncontrolled recurrent excitatory activity. In the dentate gyrus, excitatory mossy cells (MCs) project extensively onto granule cells (GCs) throughout the hippocampus, thus establishing a recurrent MC-GC-MC excitatory loop. MCs are implicated in temporal lobe epilepsy, a common form of epilepsy, but their role during initial seizures (i.e., before the characteristic MC loss that occurs in late stages) is unclear. Here, we show that initial seizures acutely induced with an intraperitoneal kainic acid (KA) injection in adult mice, a well-established model that leads to experimental epilepsy, not only increased MC and GC activity in vivo but also triggered a brain-derived neurotrophic factor (BDNF)-dependent long-term potentiation (LTP) at MC-GC excitatory synapses. Moreover, in vivo induction of MC-GC LTP using MC-selective optogenetic stimulation worsened KA-induced seizures. Conversely, genetic removal from GCs, which abolishes LTP, and selective MC silencing were both anticonvulsant. Thus, initial seizures are associated with MC-GC synaptic strengthening, which may promote later epileptic activity. Our findings reveal a potential mechanism of epileptogenesis that may help in developing therapeutic strategies for early intervention.

摘要

癫痫是一种破坏性的脑部疾病,目前有效的治疗方法非常有限。人们对早期干预越来越感兴趣,这需要更好地了解这种疾病的早期阶段的机制。虽然不同的脑部损伤都可能导致癫痫活动,但一个共同的细胞机制依赖于不受控制的反复兴奋性活动。在齿状回,兴奋性苔藓状细胞(MCs)广泛投射到整个海马的颗粒细胞(GCs)上,从而建立了一个反复的 MC-GC-MC 兴奋性环路。MCs 与颞叶癫痫有关,这是一种常见的癫痫形式,但它们在最初发作(即在后期发生的特征性 MC 丧失之前)中的作用尚不清楚。在这里,我们表明,在成年小鼠中用腹腔注射海人酸(KA)急性诱导的初始发作,是一种导致实验性癫痫的成熟模型,不仅在体内增加了 MC 和 GC 的活性,而且触发了苔藓状细胞-颗粒细胞兴奋性突触的脑源性神经营养因子(BDNF)依赖性长时程增强(LTP)。此外,使用苔藓状细胞选择性光遗传学刺激在体内诱导 MC-GC LTP 会加重 KA 诱导的癫痫发作。相反,从 GC 中基因缺失(消除 LTP)和选择性 MC 沉默均具有抗惊厥作用。因此,初始发作与 MC-GC 突触增强有关,这可能促进后期的癫痫活动。我们的发现揭示了癫痫发生的潜在机制,可能有助于开发早期干预的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeb6/9371717/3858c565cefb/pnas.2201151119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验