Suppr超能文献

使用受限立方样条的抗抑郁药剂量-效应网络荟萃分析模型。

A dose-effect network meta-analysis model with application in antidepressants using restricted cubic splines.

机构信息

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.

Graduate School for Health Sciences, University of Bern, Bern, Switzerland.

出版信息

Stat Methods Med Res. 2024 Aug;33(8):1461-1472. doi: 10.1177/09622802211070256. Epub 2022 Feb 24.

Abstract

Network meta-analysis has been used to answer a range of clinical questions about the preferred intervention for a given condition. Although the effectiveness and safety of pharmacological agents depend on the dose administered, network meta-analysis applications typically ignore the role that drugs dosage plays in the results. This leads to more heterogeneity in the network. In this paper, we present a suite of network meta-analysis models that incorporate the dose-effect relationship using restricted cubic splines. We extend existing models into a dose-effect network meta-regression to account for study-level covariates and for groups of agents in a class-effect dose-effect network meta-analysis model. We apply our models to a network of aggregate data about the efficacy of 21 antidepressants and placebo for depression. We find that all antidepressants are more efficacious than placebo after a certain dose. Also, we identify the dose level at which each antidepressant's effect exceeds that of placebo and estimate the dose beyond which the effect of antidepressants no longer increases. When covariates were introduced to the model, we find that studies with small sample size tend to exaggerate antidepressants efficacy for several of the drugs. Our dose-effect network meta-analysis model with restricted cubic splines provides a flexible approach to modelling the dose-effect relationship in multiple interventions. Decision-makers can use our model to inform treatment choice.

摘要

网络荟萃分析已被用于回答一系列关于特定疾病首选干预措施的临床问题。尽管药物的疗效和安全性取决于给予的剂量,但网络荟萃分析应用通常忽略了药物剂量在结果中所起的作用。这导致网络中的异质性更大。在本文中,我们提出了一系列使用限制立方样条的网络荟萃分析模型,这些模型将剂量-效应关系纳入其中。我们将现有模型扩展到剂量-效应网络荟萃回归中,以考虑研究水平的协变量以及在类效应剂量-效应网络荟萃分析模型中药物的分组。我们将我们的模型应用于关于 21 种抗抑郁药和安慰剂治疗抑郁症疗效的汇总数据网络。我们发现,所有抗抑郁药在达到一定剂量后都比安慰剂更有效。此外,我们确定了每种抗抑郁药的效果超过安慰剂的剂量水平,并估计了抗抑郁药效果不再增加的剂量。当将协变量引入模型时,我们发现样本量较小的研究往往会夸大几种药物的抗抑郁药疗效。我们使用限制立方样条的剂量-效应网络荟萃分析模型为多干预措施中的剂量-效应关系提供了一种灵活的建模方法。决策者可以使用我们的模型来为治疗选择提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6055/11462779/66fab3b8e014/10.1177_09622802211070256-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验