Suppr超能文献

一种使用蜻蜓优化核极限学习机的稳健慢性阻塞性肺疾病分类模型。

A robust chronic obstructive pulmonary disease classification model using dragonfly optimized kernel extreme learning machine.

作者信息

Chitra S, Alqahtani Tariq Mohammed, Alduraywish Abdulrahman, Sikkandar Mohamed Yacin

机构信息

Department of Biomedical Engineering, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, 611002, India.

Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11952, Saudi Arabia.

出版信息

Sci Rep. 2025 May 28;15(1):18702. doi: 10.1038/s41598-025-02952-6.

Abstract

Chronic obstructive pulmonary disease (COPD) is considered to be one of the most commonly occurring respiratory disorders and is proliferating at an extremely high rate in the recent years. The proposed system aims to classify the various stages of COPD using a COPD patient dataset comprising 101 patients and 24 varied factors related to the disease. In addition, a self-acquired dataset containing 560 lung CT images was also used. The obtained hybrid database is normalized, augmented, and preprocessed using bilateral filter and contrast enhanced using dynamic histogram equalization. Segmentation is then performed using SuperCut algorithm. Feature extraction is done by binary feature fusion technique involving UNet and AlexNet. Kernel extreme learning machine-based classification is conducted further, and the results produced are optimized using dragon fly optimization algorithm. The proposed system produced an enhanced accuracy of 98.82%, precision of 99.01%, recall of 94.98%, F1 score of 96.11%, specificity of 98.09%, MCC value of 94.33%, and AUC value of 0.996 which are far better when compared with other existing systems.

摘要

慢性阻塞性肺疾病(COPD)被认为是最常见的呼吸系统疾病之一,近年来其发病率正以极高的速度增长。所提出的系统旨在使用一个包含101名患者以及与该疾病相关的24个不同因素的COPD患者数据集,对COPD的各个阶段进行分类。此外,还使用了一个自行获取的包含560张肺部CT图像的数据集。对获得的混合数据库进行归一化、扩充,并使用双边滤波器进行预处理,然后使用动态直方图均衡化增强对比度。接着使用SuperCut算法进行分割。特征提取通过涉及UNet和AlexNet的二进制特征融合技术完成。进一步进行基于核极限学习机的分类,并使用蜻蜓优化算法对产生的结果进行优化。所提出的系统的准确率提高到了98.82%,精确率为99.01%,召回率为94.98%,F1分数为96.11%,特异性为98.09%,MCC值为94.33%,AUC值为0.996,与其他现有系统相比有显著提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d65/12119928/da7a8e598509/41598_2025_2952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验