Suppr超能文献

用于围手术期低氧血症预测的人工智能驱动的深度学习与肺部成像、功能分析和血气指标的整合

AI-Driven Integration of Deep Learning With Lung Imaging, Functional Analysis, and Blood Gas Metrics for Perioperative Hypoxemia Prediction.

作者信息

Huang Kecheng, Wu Chujun, Pi Rongpeng, Fang Jieyu

机构信息

Department of Anesthesiology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China.

Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Guangzhou, China.

出版信息

JMIR Med Inform. 2025 Aug 22;13:e73995. doi: 10.2196/73995.

Abstract

This viewpoint article explores the transformative role of artificial intelligence (AI) in predicting perioperative hypoxemia through the integration of deep learning with multimodal clinical data, including lung imaging, pulmonary function tests, and arterial blood gas (ABG) analysis. Perioperative hypoxemia, defined as arterial oxygen partial pressure <60 mmHg or oxygen saturation <90%, poses significant risks of delayed recovery and organ dysfunction. Traditional diagnostic methods such as radiological imaging and ABG analysis often lack integrated predictive accuracy. AI frameworks, particularly convolutional neural networks and hybrid models like TD-CNNLSTM-LungNet, demonstrate exceptional performance in detecting pulmonary inflammation and stratifying hypoxemia risk, achieving up to 96.57% accuracy in pneumonia subtype differentiation and an area under the curve of 0.96 for postoperative hypoxemia prediction. Multimodal AI systems, such as DeepLung-Predict, unify computed tomography scans, pulmonary function tests, and ABG parameters to enhance predictive precision, surpassing conventional methods by 22%. However, challenges persist, including dataset heterogeneity, model interpretability, and clinical workflow integration. Future directions emphasize multicenter validation, explainable AI frameworks, and pragmatic trials to ensure equitable and reliable deployment. This AI-driven approach not only optimizes resource allocation but also mitigates financial burdens on health care systems by enabling early interventions and reducing intensive care unit admission risks.

摘要

这篇观点文章探讨了人工智能(AI)通过将深度学习与多模态临床数据(包括肺部成像、肺功能测试和动脉血气(ABG)分析)相结合,在预测围手术期低氧血症方面的变革性作用。围手术期低氧血症定义为动脉血氧分压<60 mmHg或血氧饱和度<90%,存在延迟恢复和器官功能障碍的重大风险。传统的诊断方法,如放射成像和ABG分析,往往缺乏综合预测准确性。人工智能框架,特别是卷积神经网络和像TD-CNNLSTM-LungNet这样的混合模型,在检测肺部炎症和对低氧血症风险进行分层方面表现出色,在肺炎亚型区分中准确率高达96.57%,术后低氧血症预测的曲线下面积为0.96。多模态人工智能系统,如DeepLung-Predict,将计算机断层扫描、肺功能测试和ABG参数统一起来,以提高预测精度,比传统方法高出22%。然而,挑战依然存在,包括数据集的异质性、模型的可解释性以及临床工作流程的整合。未来的方向强调多中心验证、可解释的人工智能框架和务实试验,以确保公平和可靠的部署。这种由人工智能驱动的方法不仅优化了资源分配,还通过实现早期干预和降低重症监护病房入住风险,减轻了医疗保健系统的经济负担。

相似文献

本文引用的文献

1
Artificial intelligence in hospital infection prevention: an integrative review.医院感染预防中的人工智能:一项综合综述。
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
6
Diagnosis and Management of Acute Respiratory Failure.急性呼吸衰竭的诊断与治疗。
Crit Care Clin. 2024 Apr;40(2):235-253. doi: 10.1016/j.ccc.2024.01.002. Epub 2024 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验