Suppr超能文献

马来西亚 COVID-19 传播的人口水平指标的空间动态和多尺度回归建模。

Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia.

机构信息

Clinical Research Center, Seberang Jaya Hospital, Ministry of Health Malaysia, Seberang Perai 13700, Malaysia.

Institute for Clinical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Malaysia.

出版信息

Int J Environ Res Public Health. 2022 Feb 13;19(4):2082. doi: 10.3390/ijerph19042082.

Abstract

As COVID-19 dispersion occurs at different levels of gradients across geographies, the application of spatiotemporal science via computational methods can provide valuable insights to direct available resources and targeted interventions for transmission control. This ecological-correlation study evaluates the spatial dispersion of COVID-19 and its temporal relationships with crucial demographic and socioeconomic determinants in Malaysia, utilizing secondary data sources from public domains. By aggregating 51,476 real-time active COVID-19 case-data between 22 January 2021 and 4 February 2021 to district-level administrative units, the incidence, global and local Moran indexes were calculated. Spatial autoregressive models (SAR) complemented with geographical weighted regression (GWR) analyses were executed to determine potential demographic and socioeconomic indicators for COVID-19 spread in Malaysia. Highest active case counts were based in the Central, Southern and parts of East Malaysia regions of Malaysia. Countrywide global Moran index was 0.431 ( = 0.001), indicated a positive spatial autocorrelation of high standards within districts. The local Moran index identified spatial clusters of the main high-high patterns in the Central and Southern regions, and the main low-low clusters in the East Coast and East Malaysia regions. The GWR model, the best fit model, affirmed that COVID-19 spread in Malaysia was likely to be caused by population density (β coefficient weights = 0.269), followed by average household income per capita (β coefficient weights = 0.254) and GINI coefficient (β coefficient weights = 0.207). The current study concluded that the spread of COVID-19 was concentrated mostly in the Central and Southern regions of Malaysia. Population's average household income per capita, GINI coefficient and population density were important indicators likely to cause the spread amongst communities.

摘要

随着 COVID-19 在地理上不同梯度层面的传播,通过计算方法应用时空科学可以为传播控制提供有价值的见解,以指导现有资源和有针对性的干预措施。本生态相关性研究评估了 COVID-19 在马来西亚的空间分布及其与关键人口和社会经济决定因素的时间关系,利用公共领域的二手数据源。通过将 2021 年 1 月 22 日至 2 月 4 日期间的 51,476 例实时 COVID-19 活跃病例数据汇总到区县级行政单位,计算了发病率、全局和局部 Moran 指数。执行空间自回归模型 (SAR) 并辅以地理加权回归 (GWR) 分析,以确定马来西亚 COVID-19 传播的潜在人口和社会经济指标。最高的活跃病例数集中在马来西亚中部、南部和东部部分地区。全国全局 Moran 指数为 0.431(=0.001),表明各区之间存在高标准的正空间自相关。局部 Moran 指数确定了中部和南部地区主要高-高模式的空间聚类,以及东海岸和东马来西亚地区的主要低-低聚类。最佳拟合模型的 GWR 模型证实,马来西亚 COVID-19 的传播可能是由人口密度(β系数权重=0.269)引起的,其次是人均家庭平均收入(β系数权重=0.254)和基尼系数(β系数权重=0.207)。本研究得出结论,COVID-19 的传播主要集中在马来西亚中部和南部地区。人口的人均家庭平均收入、基尼系数和人口密度是可能导致社区传播的重要指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba3/8871711/34298bc7df70/ijerph-19-02082-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验